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ABSTRACT

An experimental validation of the Schwartz-Hon computer code for emissivity

of the rough sea surface in the grazing angle region was carried out using an AGEMA

780 thermovision radiometric sensor. The experimental measurements were made

in Monterey Bay using a meteorological suite mounted on the Research Vessel Point

Sur, with coordinated radiosonde launches. Predicted sea surface radiance was com-

puted from reflected sky radiance and thermal sea emission, using the Schwartz-Hon

algorithm for sea emissivity and equivalent specular incidence angle. PC-TRAN in

radiaaice mode was used to compute the sky radiance, and compared with AGEMA

measurements. AGEMA sea radiance measurements were compared with the model

predictions as a function of observation angle and were found to agree within 8% for

elevation angles from zero to 5 degrees. PC-TRAN sky radiance computations for

the grazing angle region agreed with AGEMA measurements within approximately

12%.
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I. INTRODUCTION

A. GENERAL

In recent years, the United States Navy has developed and deployed a large

number of optical and infrared devices for use on surface ships and aircraft. These

systems are used for target detection, recognition, intelligence gathering, and weapon

deployment. Performance of these systems may be degraded significantly by signal

attenuation due to atmospheric absorption, precipitation, aerosols, fog, and clouds.

System design is further complicated by the fact that potential targets interact with

the environment so that the expected infrared contrast of the target relative to

its background may be difficult to measure. To predict performance of any infrared

detection system, it is necessary to know not only something of the target's signature

but also the background.

An infrared system model can be divided into three major areas. The first

describes the difference between target temperature and the ambient temperature

surrounding it. From performance runs on actual targets, differences between target

and ambient temperatures are compared and a resulting temperature difference

is determined (AT). The second component of the system describes the varied

effects the atmosphere has on infrared transmission. These effects include reflection.,

refraction, absorption, and scattering. The third and final component describes the

performance characteristics of the actual infrared measuring device. These include

system parameters such as spectral bandwidth and minimum resolvable temperature

difference. Within each of these components, complex computer algorithms have

been developed to simulate and accurately describe atmospheric effects on sensor

performance [Ref. 2: p. 1-8].



B. RELATED WORK

Currently, there is a great deal of work being done to improve computer

algorithms used for predicting infrared performance. Previous work in this area at

the Naval Postgraduate School includes LT Mark Ridgeway's look at sea surface

emissivity models for use in forward looking infrared (FLIR) tactical decision aids

[Ref 3] and Maj Panagiotis Psihogios' studies of thermal imaging of sky and sea

surface background infrared radiation [Ref. 4].

This thesis will deal with the results of a computer model (The Ira B. Schwartz

and David Hon Model) used to generate a synthetic surface as a function of wind

speed and viewing angle and compute its effect on the average emissivity of the

ocean surface. Of particular importance is the fact that ocean surface roughness

is a function of wind speed and this determines the emissivity of the ocean surface

[Ref. 1: p. 1]. Since the emissivity of a water surface is angle dependent, one needs

to know the geometry of the ocean surface at any given time. The Schwartz-Hon

model predicts average ernissivity at specific view angles and wind speeds; however,

the capacity of the model to predict emissivity at low grazing angles is still unproven.

C. ORIGINAL AREA OF THESIS RESEARCH

The original area of this thesis research effort was to be the experimental

validation of FLIR tactical decision aids for use by patrol aircraft. Equipment failure

and weather constraints hampered this effort and newly acquired data will instead

be applied to existing algorithms where suspected deficiencies exist in modeling.

The experimental plan devised and the difficulties encountered are described in

Appendix C.
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D. PURPOSE AND ORGANIZATION OF THESIS

This thesis will describe an experiment to validate the Schwartz-Hon algo-

rithm for sea surface emissivity and sky radiance incident on the ocean surface at

low grazing angles beyond the previously validated range of the model. Thermal

images of sky and sea background radiance were taken with an AGEMA 780 Ther-

movision Imaging System and were compared to apparent sky radiance predicted

by the propagation/radiance code LOWTRAN 6. In order to simulate the viewing

angle of a patrolling aircraft flight path or a surface ship sensor, grazing angles on

the order of 1'-5° were used.

The present work consists of five chapters including the introduction. The

thesis is organized as follows:

A. Chapter I - Introduction

B. Chapter II - Theory and Background: Thermal radiation theory,
equations used in validation of model and experimental
background.

C. Chapter III - Equipment: Describes equipment and measurement
techniques.

D. Chapter IV - The Schwartz-Hon Model: Describes the procedure for
validation of the Schwartz-Hon model.

E. Chapter V - Summary, conclusions, and recommendations for further
study in this area.

F. Appendixes A and B are figures and tables.

G. Appendix C is a description of the original area of thesis research.

H. Appendix D is a listing of the computer program AGACATS, written
in FORTRAN and compikd with microsoft FORTRAN V.

I. Appendix E describes an experimental measurement of the emissivity of the
R/V Point Sutr.

3



II. THEORY AND BACKGROUND

A. THE INFRARED SPECTRUM

Every object with a temperature other than absolute zero emits what is

known as thermal radiation. A thermal radiator emits energy due to its temperature

and for objects at ambient temperatures this emission is concentrated mainly in the

infrared region of the electromagnetic spectrum. This band is bounded on one side

by the visible region at a wavelength of approximately .7 pm and on the other by

the millimeter waveban i at 1000 pm. The infrared spectrum is broken down into

the near infrared (.70-3 pm), middle infrared (3-6 pm) and the far infrared (6-15

pm) region.

The ability of an infrared system to detect a target is dependent on many

factors affecting the apparent target to background temperature difference. The

atmosphere is characterized by transmitting windows whose spectral location re-

stricts the choice of detector and optical material. Figure 2.1 shows the relationship

between wavelength and transmittance in the .3 to 14 pm wavelength region for

a 6000 ft horizontal path at sea level [Ref. 5: p. 115]. IR imaging systems can

be severely degraded by high humidity or poor visibility. The 3-5 pm window is

superior in transmittance on clear, humid days while hazy, dry days favor the 8-12

Pm [Ref. 5: p. 114-141]. The AGA 780 Thermovision camera used to collect data

in this experiment is able to detect IR radiation in both windows. This section

is devoted to the basic concepts and mathematical relations used to describe and

analyze thermal imaging systems.

4



B. RADIATION QUANTITIES - LAWS

The following thermal radiation laws and equations are used in validating the

Schwartz-Hon algorithm. All equations are taken from Hudson [Ref. 5: p. 35-64]

and Lloyd [Ref. 6: p. 1-55].

1. Planck's Blackbody Radiation Law

Planck's Law describes the spectral distribution with which all objects

with a temperature above 00 Kelvin radiate or emit energy in the electro-magnetic

spectrum. The intensity with which a body radiates at each wavelength in the elec-

tromagnetic spectrum is the spectral brightness of the blackbody. The blackbody

emits and absorbs the maximum theoretically available amount of thermal radia-

tion at a given temperature. The spectral radiant emittance is a function of the

teriperature and wavelength and is shown in the following equation:

BA = (2hc')/(A5 [exp(hc/kTA)] - 1) Watts/m 3  (2.1)

A = Wavelength (m)

k = Boltzmann's constant (J. K - 1)

c = Speed of light (m/s)

h = Planck's constant (J s- 1)

T = Temperature (K)

Planck's Law is fundamental for all forward looking infrared systems

and holds throughout the entire electromagnetic spectrum. Figure 2.2 shows the

spectral radiant emittance of a blackbody at various temperatures, ranging from

5000 to 900' Kelvin [Ref. 5: p. 36].

5



2. Stefan-Boltzmann Relation

The Stefan-Boltzmann relationship expresses the total radiant emit-

tance, B, by integrating BA over all the wavelengths in Equation (2.1). The re-

lationship that remains after integration is:

B = TV (2.2)

B = Radiant emittance (Watts/m 2 )

o = Stefan-Boltzmann constant (5.67 * 10- ) (Watts/m 2K4)

= (2tr5k 4)/(15c2h3)

3. Lambert-Beer Law

Every object with a temperature greater than absolute zero emits ther-

mal energy. Atmospheric transmittance at a specific wavelength for a specific set of a

atmospheric conditions can be described by an equation known as the Lambert-Beer

Law:

TA(A) = exp(-p(A)R) (2.3)

R = Range or path length

p = Extinction coefficient

A = Specific wavelength

For the purposes of these experiments, we will primarily be interested in

a narrow range of wavelengths in the infrared region of the electromagnetic spectrum

from 8 to 12 pm.

4. Absorption and Scattering

Two processes which attenuate infrared energy as it propagates through

the atmosphere are absorption and scattering. Thermal radiation is attenuated in

6



the atmosphere by absorption by gas molecules, scattering by molecular clusters

(aerosols), aerosol absorption and molecular scattering. The total extinction co-

efficient is the sum of the coefficients for total absorption and total non-forward

scattering. Water, carbon dioxide, and ozone are the most significant absorbers of

this radiation and are described in the following equations:

P = PA + I-s (2.4)

p = Total extinction coefficient

PA = Extinction coefficient for total absorption

ps = Extinction coefficient for scattering

Scattering and absorption may further be broken down into categories

according to their causes:

PA = km+kA (2.5)

PS = am + aA (2.6)

km = Molecular absorption coefficient

k, = Aerosol absorption coefficient

am = Molecular scattering coefficient

aA = Aerosol scattering coefficient

5. Radiation Contrast

The AGA Thermovision camera operates on the concept of radiation

contrast which is defined as the ratio of the difference between target and background

radiant emittance to their sum [Ref. 7: p. 10.11.

CR = (WT - WB)/(WRT + WB) (2.7)

7



CA = Radiation contrast

WT = Target radiant emittance

WB = Background radiant ernittance

Figure 2.3 shows the radiation contrast for the 8-14 pm band as a function of target

to background temperature difference for four background temperatures [Ref. 6:

p. 29]. In-band radiant emittance for the target (T) or background (B) may be

found by integrating Equation (2.1) over the wavelength range of interest. The area

between the two wavelengths of interest (minus absorption and scattering) represents

the power available for the thermal imaging system. It is this contrast in radiant

emittance that allows a target to be detected.

WT f12 B,(TT)dA (2.8)

WB = B.(TB)d,\ (2.9)

Differentiating with respect to temperature yields the following equa-

tions:
OWT = A2 OB.A(TT) dA (2.10)
OT J, T

077- JA2 ,\( dA (2.11)

The spectral radiant emittance, B\, is plotted as a function of wavelength

at several interesting temperatures in Figure 2.4 [Ref. 6: p. 23]. Table 2.1 [Ref. 6:

p. 291 shows the integrated thermal derivative of Planck's law for wavelengths from

3 to 14 pm at several background temperatures (TB). The majority of scenes taken

in this experiment do not have apparent temperature differences in excess of ±20

K from the ambient so we will confine reference to that range. According to Lloyd

8



[Ref. 6: p. 22], for small differences between target and background temperature,

the target radiant emittance may be expressed as:

Ow
WT = WB- -- AT (2.12)

from which:
AT = WT-WB (2.13)

OT IT=T2

with the partial derivative:

'OW from the values of the spectral integral of the thermal
0 T=TB

derivative of Planck's law shown in Table 2.1.

The parameter AT is the temperature difference between blackbody

sources with equivalent radiance difference and will be referred to in this paper

as the radiometric AT. It represents the difference between the radiance of the

target (LT) and the radiance of the sea surface (LssE).

6. Effective Sea Surface Radiance
The total radiance from the sea surface consists of the radiance due to

the sea surface temperature, sea surface emissivity, and sky radiance reflected from

the sea surface [Ref. 8: p. 8431. This total radiance at a given view angle from the

sensor to the target is shown in the following formula [Ref. 3: p. 14]:

LSSE = (ass * LSST) + (Pss * LSKY) (2.14)

LSSE = Total in-band surface radiance (Watts/cm 2 - sr

as measured using the AGA camera).

LSKY = In-band sky radiance incident on the sea surface

(measured using LOWTRAN 6, Watts/cm2 - sr).

ess = Sea surface emissivity (calculated using the
FORTRAN program EMISS).

LSST = Blackbody in-band radiance due to sea surface temp.

pss = sea surface reflectivity

9



In fact, the total reflected sky radiance is an integral over the total hemisphere and

wave slope spectrum.
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III. AGA 780 THERMOVISION SCANNER

A. INTRODUCTION

The AGA 780 Thermovision scanner with the CATS E program is a dual

selectable channel, nitrogen cooled thermographic scanner consisting of a standard

shortwave (SW) scanner, which covers the 3 to 5.6 pm spectral band, and the

longwave (LW), which covers the 8 to 14 pm spectral band [Ref. 7: p. 10.11.

Developed by AGEMA INFRARED SYSTEMS in 1965, it is designed for both real-

time imaging directly from the scanner or on playback from a video tape recorder

(VTR). The recently developed CATS E software package is designed to use the

high processing speed and storage capacity of an AT computer which allows the

acquisition and storage of 1500 CATS images on the hard disk. Spotmeters, profiles,

areas of special interest, statistics, and histograms can be activated for real time

measurement as well as for the evaluation of frozen images.

B. DESCRIPTION OF THE SYSTEM

The basic system consists of a black and white monitor chassis for each of

the short and long wavelengths, the AGEMA system cards (TIC-8000), and a dual

optical scanner unit. In addition to this off the shelf system, the Naval Postgraduate

School has added a Sony RGB color monitor, a Cannon color printer, and an IMB

AT microcomputer configured with the latest AGEMA CATS E operating program

(Version 2.1), Figure 3.1.

1. Electro-Optical Scanning Mechanism

The electromagnetic energy emitted from a target is focused by infrared

lenses into a vertical prism rotating at 180 rpm, and its optical output is passed

11



through a horizontal prism which rotates at 18,000 rpm. The rotation of both prisms

is controlled by slotted discs which are electronically connected to horizontal and

vertical triggering circuits to provide triggering pulses to the monitor. The motors

are synchronized so that four fields of 100 horizontal scanning lines each produce

one interlaced frame. There are 70 active lines per field and the scanning rate is 25

fields per second. The output from this prism passes through a selectable filter, the

aperture unit and finally onto the single point detector unit located on the wall of

the nitrogen cooled Dewar chamber (cooled to -196°C for approximately 2 hours

per filling of liquid nitrogen). An Indium-Antimonide (InSb) detector is used in the

3-5.6 pm band and a Mercury-Cadmium-Telluride (HgCdTe) detector in the 8-14

pm band. The resulting electronic output signal from the detector is proportional to

the radiation incident upon it. This electronic signal is amplified within the scanner

and sent to one of the black and white monitor chassis [Ref. 7: p. 10.2J.

2. Optics

Optics for the AGEMA 780 system consist of a silicon lens for operation

in the 2-5.6 pm range and a germanium lens for the 8-12 pm band. The standard

33 mm lens focuses from .5 m to infinity with an instantaneous field of view (pixel

size) of 3.4 m radians and a scan coverage of 20 x 20 degrees. The aperture stop can

be adjusted between f/1.8 and f/20. Data was collected using lenses with 3.5 and 7

degree fields of view, f/1.8 aperture stop and no filters.

3. Black and White Monitor Chassis and Color Monitor

The video signal from the scanner unit is amplified and processed within

the monitor chassis and applied to the display screen. This black and white screen is

covered by a mask with vertical and horizontal scales which are illuminated by the

display raster [Figure 3.2]. A standard 19 inch television screen has been coupled

to the system to enlarge the display screen of the black and white monitor chassis.

12



The AGA's numerical measure of the received and detected radiation is known as

the thermal value, measured in isotherm units (IU), which is a practical arbitrary

unit of measurement. The relationship between thermal value and received photon

radiation is linear, while the relationship between thermal value and object temper-

ature is non-linear. Three calibration constants are required to calculate the correct

temperature at each aperture setting of the camera. The AGEMA camera used in

this experiment was calibrated one week before the measurements were taken and

the constants are shown in Table 3.1. The Thermovision camera measures the scene

radiance and the results are expressed in isotherm units (IU) which is an arbitrary

unit of measurement. A thermal range scale with settings from 2-1000 in 9 incre-

ments is located on the front panel. Next to this is the thermal control which sets

the thermal level of the image. The ability of the CATS 2.1 program to store the

thermal range and thermal level is a great improvement over the DISCO interface

previously used in all Naval Postgraduate School data taking. The Sony color mon-

itor and Cannon color printer allow the user to analyze the data in a much more

quantitative way. The color display consists of a number of "sliced levels" of the

total energy being displayed. The temperature range of each color is displayed in

the picture by a color-temperature scale. The same color indicates different tem-

perature ranges for different settings of thermal range and thermal level controls.

Thus, the same color appearing in different places in the display represents the same

power impinging on the detector [Ref. 7: p. 10.9].

4. Computer and Software Package

The AGEMA camera is connected to an IBM AT microcomputer with

a 20 mb hard disk and a 12 Mhz clock cycle. The system is configured with the

AGEMA system cards (TIC-8000) and a software package called CATS 2.10 (ver-

sion E) [Ref. 8]. The infrared images generated by the CATS program are stored

13



on the IBM AT hard disk or diskette in the form of normal PC-DOS files. These

files are characterized by the extension .1MG and are stored under the directory

/CATS/IMAGES. A computer program called AGACATS (Appendix D) was writ-

ten in FORTRAN and compiled with microsoft FORTRAN V. It can be used to

analyze images read from the image files created by the CATS program. The im-

age comparison between the two program is very good [Figure 3.31. The advantage

of the AGACATS program is that it makes the data from the AGEMA camera

compatible and accessible to any microcomputer. One image file comprises 20,446

bytes of which the first 846 contain heading, calibration, and other miscellaneous

information. The image is contained in the last 19,600 bytes which correspond to

the digital thermal values of eari pixel. The following algorithms generated by the

AGEMA Corporation are used in the reading from the CATS files and processing

the data:

A. To = B/IN(RIIo + F) - 273.15 (degrees C)

B. Io = Io/(e * r) - (1 -E ) * •IAM- (1 -T)l - 7) •IATM, (IU)

C. IAMB = RI(exp(B/TAM B) - F) (IU)

D. IATM = RI(exp(BITATM)- F) (IU)

E. I = L + OC + R(d- 128/254) (IU)

where:

L = Thermal level (IU)

OC = Offset correction (normally zero, IU)

R = Thermal range (IU)

d = Digital sample value for the measured point (1 < d < 255)

e = Emissivity factor

14



r = Transmission factor for the atmosphere

R, B, F = Calibration constants

C. THERMAL MEASUREMENT TECHNIQUES

There are two basic methods of measuring the temperature of an object using

the AGA Thermovision camera: relative and direct.

1. Relative Measurement

Relative measurement uses an external reference with known temper-

ature and emissivity factor. Both objects are placed next to each other and the

thermal range and level are set at the lowest levels consistent with displaying both

reference and object in the same isotherm [Figure 3.4].

2. Direct Measurement

This method utilizes the instrument's built-in temperature compensa-

tion system that permits temperature measurement without the use of an external

temperature reference. Under these simplified conditions, assuming 60 = 1, the cal-

ibration curves can be used directly for translating the measured thermal value to

temperature [Figure 3.5].

All measurements in this experiment were made using the direct mea-

surement technique. The following step by step measurement procedure is taken

from Reference 7.

* Adjust the THERMAL RANGE and THERMAL LEVEL (L) controls to ob-

tain a satisfactory thermal picture (Note setting of L).

e Adjust the ISOTHERM LEVEL (i) control to brighten up the point of interest

on the object in view.
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* Add the values of "L" and "i" from (a) and (b). The result will be the measured

thermal value Io (IU).

Under these conditions, the calibration curves can now be used for trans-

lating the measured thermal value, Io to temperature [Figure 3.5].

In the normal color image, the isotherm levels are arranged in a linear

fashion such that each color represents an equal number of isotherm units. These

units are then converted to temperature using calibration curves provided by the

AGEMA Corporation. As can be seen by the curves, temperature is a function of

isotherm units and is non-linear. Each color represents a different range of tem-

peratures depending on where they fall on the calibration curve. The Microsoft

FORTRAN program shown in Appendix D converts the linear color scale (with its

non-linear temperature relationship) to a non-linear color scale with the linear tem-

perature relationship. The benefit of having each color represent an equal number

of degrees is that it eliminates the necessity to use the calibration curves [Figure

3.6].

In choosing the colors for the presentation, a zero or non-level is indicated

by the color black and the top color level is white, with ten different colors in

between. The program is unable to distinguish any variability in temperature within

the black or white color region. The ope, .tor is warned of temperature valu,:s above

or below the selected range by the cue "overfill" or "underfill."
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IV. VALIDATION OF THE SCHWARTZ-HON
MODEL

A. SCHWARTZ-HON MODEL

The Schwartz-Hon algorithm involves a study done at the Naval Research

Laboratory in Washington, D.C. to model radiance of the sea surface as a function

of viewing angle. This model is complicated by the fact that the ocean is a rough

surface that changes with varying wind speed. The infrared radiance of the sea is

described by two components: Self emission and sky reflectance. Assuming that the

entire ocean is emitting at some fixed temperature, emissivity is purely a function

of surface roughness. Specifically, for a given flat horizontal element of surface area,

the water has an emissivity that is only a function of viewing angle with respect to

the surface normal [Ref. 1: p. 2]. The ocean can be thought of as an ensemble of

small facets each of which emits and reflects infrared radiation. It is easy to see that

the distribution of facet orientations can have a large effect on the infrared radiation

emanating from the sea surface. If the wind was calm and the sea was smooth, all

the facets would be horizontally oriented. When an ocean surface roughened by

high winds is viewed near grazing, most of the facets seen by the sensor are tipped

away from the horizontal toward the sensor. This phenomenon impacts upon both

the amount of radiation emitted from the sea and the amount of radiation reflected

from the sky [Ref. 9: p. 838]. The radiance of the surface depends on the slope

distribution and orientation of the fluid surface which, in turn, is dependent on the

wind speed [Ref. 1: p. 7]. Figure 4.1 shows only the incoming sky radiance at the

proper angle reflecting off the facet orientations toward the sensor. The Schwartz-

Hon probabilistic model of the apparent radiance of a rough sea surface requires:
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* The development of an accurate sea surface model that incorporates wind
velocity as a parameter.

* Computation of the surface emissivity from the model.

* Subsequent inference of surface temperature.

1. Computer Program-EMISS (Schwartz-Hon)

EMISS is a computer program developed by Mr. John Cook of the

Naval Oceanographic & Atmospheric Research Laboratory (NOARL) that utilized

the newly developed Schwartz-Hon model to compute infrared (IR) emissivity of the

sea surface and the effective specular reflection angle for incoming sky radiance. The

program requires inputs of view angle and wind speed and yields a calculated sea

surface emissivity over the selected ocean area or footprint and an effective specular

angle.

The sea surface is not smooth; therefore roughness must be accounted for

since it affects the modeling of emissivity. To sirr ,J,*fy the computer model, Schwartz

and Hon assumed that the sea surface temperature was constant and emissivity was

only a function of the surface roughness. In addition it was assumed that the sea

surface was composed of many flat, reflecting surfaces and the emissivity of each

surface was dependent on its slope and the viewing angle of the detector. A large

number of these flat surfaces were spatially averaged over a footprint. An azimuth

angle was chosen in the direction along the footprint from which elevation and slope

values were taken. Rays were taken from each element of the footprint to the view

point. The emissivity of the footprint was then calculated as the spatial average of

the emissivity over all elements of the footprint [Ref. 1: p. 3] [Figure 4.1].

In addition to the output of average emissivity over a given ocean area,

the EMISS program also outputs a zenith angle for incoming radiance from the sky

associated with the mean apparent wave slope of the footprint. This is calculated
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by assuming that the average emissivity over the footprint is due to a single sloping

surface of smooth water [Ref. 1: p. 2]. The model extrapolates from the mean

emissivity to one for zero wind speed. After calculating the slope angle (a) of the

sloping surface, the model outputs an effective sky radiance (LSKY) or reflection

angle (eR) using the relationship:

OR = O - 2a

As the viewing angle increases toward the normal to the mean apparent

wave slope of the footprint (NF), emissivity approaches a maximum. As viewing

angle increases past NF and approaches grazing (90 degrees), sea surface emissivity

as a function of angle approaches zero. Figure 4.2 depicts the graph of emissivity

vs. nadir angle for several different wind speeds [Ref. 1: p. 25].

2. Shapiro Algorithm in EMISS

An algorithm developed by Mr. Ralph Shapiro of ST Systems Corpora-

tion was also designed to calculate the emissivity and reflection angle for incoming

sky radiance at view angles from 0'-90* [Ref. 10: p. 24]. It was found that for very

large view angles (above 850) substantial errors in infrared reflectivity were found.

These errors were originally thought to be a result of the shadowing effect on the

back sides of the wave fronts. For 01, equal to zero, the front and back sides of the

waves each occupy one-half of the view of the water surface, regardless of the slope

of the wave. As Ov increases, a larger proportion of the water surface appears as

a wave front [Ref. 10: Appendix A]. As in the Schwartz-Hon algorithm, the effect

of wind on the sea surface causes the emissivity of the surface to increase. The

Shapiro model of reflectivity vs. view angle for various wind speeds as seen in Fig-

ure 4.3 shows that for view angles between 0*-65* the reflectivity of the sea surface

is constant and, as Ov approaches 90', the reflectivity decreases with wind speed.
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The majority of infrared (IR) sensors in use by the Navy today operate at very low

altitudes thus making the larger view angle portion of the graph very important.

The EMISS program utilizes the latest water surface emissivity model developed by

Sidran [Ref. 11: p. 3176-3183] which is the basis for all models in use by the Navy

today. The Sidran model along with the Shapiro algorithm have only been validated

to view angles (Ov) less than or equal to 850. The EMISS computer program will be

applied to validation of the Shapiro algorithm in the range of Ov between 850 and

900.

3. PC-TRAN and LOWTRAN 6

An atmospheric propagation code was needed to predict the net emission

of radiation in the atmospheric path. The model most suited for this experiment

was the low resolution FORTRAN computer code called LOWTRAN 6. LOWTRAN

calculates atmospheric radiance and transmission for a specified path through the

atmosphere with a wavelength range from .25 to 28.5 pm and a resolution of 20 cm - 1.

The output transmittance is the product of all the transmittances due to water

vapor line absorption, water vapor continuum absorption, mixed gases, nitrogen, and

aerosol absorption, and aerosol and molecular scattering. The code includes effects

caused by atmospheric refraction and the curvature of the earth. The atmosphere

is treated as a stack of up to 33 atmospheric layers, from 0 to 100 km altitude. As

the path passes through each layer in the model, the atmospheric components of

interest are computed and summed over the path and wavelength band.

For portability and ease of use, PC-TRAN by the Ontar Corporation

[Ref. 12], was used in place of LOWTRAN 6 for all calculations. This software

package allows the user to perform all LOWTRAN 6 calculations, display the cal-

culation on the computer screen, and generate hard copy plots. PC-TRAN inputs

are shown in Table 4.1.
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B. EXPERIMENTAL VALIDATION OF THE
SCHWARTZ-HON SEA RADIANCE MODEL

1. Introduction

An experiment was carried out to validate the Schwartz and Hon algo-

rithm at low grazing angles. A validation of the Schwartz-Hon computer model

for the emissivity of the sea surface was accomplished by comparison of measured

sea surface radiances taken with the AGEMA Thermovision 780 series camera to

those calculated by the PC-TRAN computer code. All the factors which effect the

radiance measurements were taken into account and the degree to which they effect

the data was estimated. This work is a continuation of research done by LT Ridge-

way [Ref. 3], and Major Psihogios [Ref. 4]. Many of their recommendations and

data-taking techniques were used in this experiment.

2. Meteorological Conditions

Clear sky conditions and a variety of wind speeds would be the best

conditions to validate the Schwartz-Hon algorithm. The weather on the day of

the experiment was initially overcast and cloudy with a large fog bank over the

bay. Initial temperature was 13.4°C, relative humidity was 91%, and windspeed

was relatively constant throughout the experiment. The fog began to dissipate and

a horizon was clearly visible after approximately half the images were taken.

C. EXPERIMENTAL PROCEDURE

On May 2, 1990, 93 images of the R/V Point Sur and the sea/sky interface

were taken in the Monterey Bay with the AGEMA Thermovision camera. The

camera was set up at the Marine Oceanographic Beach Laboratory of the Naval

Postgraduate School by Professor A. W. Cooper and his staff [Figure 4.4]. As noted

by LT Ridgeway [Ref. 3] and Major Psihogios [Ref. 4], correlating the physical
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horizon of the observer with the estimated horizon of the thermal image taken with

the AGEMA camera was a significant problem. To calculate the height of the camera

above the surface of the water, the original building plans for the Oceanography

Department Beach Lab were used to calculate the observation height above mean

sea level. Tide level was obtained via modem from the Monterey Bay Aquarium

buoy and a total height above the mean sea level for the camera was obtained.

1. Correlation of the Physical Horizon with the Computer Display

PC-TRAN was then used to correlate the viewed horizon with the

AGEMA camera display screen. View angles were entered into PC-TRAN to deter-

mine the last incidence angle before a ray launched toward the horizon continued

on into space. This was accomplished by noting the path length calculated by the

PC-TRAN program. For the view angle ray-path that continued on to space, the

computed path length would be large compared to the previous view angle. This

view angle was used to correlate the viewed horizon with the AGEMA screen [Ref.

3: p. 33].

By knowing the number of pixels on the AGEMA screen and using the

mouse cursor function in the newly-developed AGACAT computer code to read

temperatures along a vertical line, the thermal discontinuity or horizon can be seen

both in the color display and in the spot temperature difference of the image. The

lowest temperature in this region represents the ocean and the upper temperature

represents the sky. The lens used in the experiment had a field-of-view of 3.50 and

the AGACAT program uses a picture area of 140 x 140 pixels for VGA monitors.

Using the VGA monitor as an example, the field of view is divided by the number of

horizontal pixel units to yield .02500 per cursor movement. Elevation angles above

and below the horizon can now be measured to an accuracy of .02500.
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2. Measurements

The procedure for the validation of the Schwartz-Hon model includes the

following terms:

v = Zenith angle or view angle (degrees).

e = 1800 - Ov or 6i = Reflection angle (degrees).

S0, = Incidence angle or effective sky radiance angle (Schwartz-Hon model,
degrees).

* Ess = Sea surface emissivity (Schwartz-Hon computer model).

* pss = Sea surface reflectivity (pss = 1 - ess).

e Range = AGA sea surface distance (from LOWTRAN 6) (km).

e LT = In-band radiance of the R/V Point Sur (W/cm2 - sr).

* LSKY = In-band radiance from the sky at OR (measured by the AGEMA
camera) (W/cm 2 - sr).

* LSST = In-band sea surface radiance due to the sea surface temperature LSST
(W/cm2 - sr).

* LSSE = Total in-band radiance from the sea surface (W/cm2 - sr) (ess *
LSST) + (p., * LSKY) (measured with the AGA camera).

* Lssc = Calculated sea surface radiance at Ov (W/cm 2 - sr).

e LSSM = Measured sea surface radiance (measured with the AGA camera)
(W/cm2 - sr).

* TBR = LSSE - LSSTI [I/r* T = TSST] + TSST (blackbody temperature
at sea surface, *C).

e TSSE = Sea surface temperature corresponding to LSSE (*C).

0 TSST = Sea surface temperature (*C).

* Tssc = Corresponding in-band blackbody temperature (Lssc) (°C).

* TSSM = Corresponding in-band blackbody temperature (Lssm) (*C).

* TEB = In-band blackbody temperature (TBB = 'V(T)/Aq * a ) (radiance
value to in-band blackbody temperature conversion) (*C) where:
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- W(T) = Radiant emittance.

- Aq = % of radiant emittance in wavelength of interest.

- a = 5.6697 * 10-11 [Watts/cm 2 K4].

9 Inputs required by the computer program PC-TRAN are listed in Table 4.1.

9 Inputs required for angle measurements are shown on Figure 4.5.

D. DATA COLLECTION

The above equations are used to compare the sea surface temperature and

radiance values that were calculated using the Schwartz-Hon algorithm and LOW-

TRAN 6 (LssE and TssE) to temperature and radiance measured with the AGEMA

Thermovision camera (LssM and TSSM). The required meteorological readings and

a brief description of the variables used in the calculations follows:

1. Meteorological Data

Meteorological data taken at the time of the experiment was collected

from four different sources:

A) Shipboard measurements of air temperature, sea surface temperature, dew
point, relative humidity, wind speed and direction were taken by computer
at five minute intervals (Table 4.2).

B) Meteorological readings were collected from the Monterey Bay Aquarium
buoy located at 36-48.5°N, 122-24.4°W. A modem was connected to a Mac-
intosh SE/30 computer to collect the real time data (Table 4.3).

C) Radiosondes were launched from the R/V Point Sur every four hours for the
duration of the cruise. A special launch was made immediately following the
data-taking portion of the experiment with the results listed in Table 4.4.

D) Data was also taken on site using a Solomat measuring device connected to
a COMPAQ 3 portable computer. This instrument is capable of measuring
temperature, pressure, humidity, and windspeed and the results are listed in
Table 4.5.

2. Ov: View Angle Measurement

As shown in Figure 4.5, Ov is the viewing angle from the camera lens to

the ship. This angle was determined by finding the relative height of the camera
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(Hc) above the surface of the water. The height of the ground above mean sea

level (MSL) where the camera was positioned was obtained from the original geo-

graphical site plans used to construct the Oceanographic Beach Lab and is labeled

HD. Tide heights were obtained from the Monterey Bay Aquarium buoy [Table 4.3]

and the height of the camera above sea level is determined by adding Hc + HD and

subtracting the difference in tide height from mean sea level (MSL).

3. 0i and OR Measurement

As shown on Figure 4.5, 0i is the angle from the normal line tangent to

the earth's surface to the view direction. This angle is calculated by entering the

view angle (Ov) into PC-TRAN and reading out the corresponding Oi. OR or the

incidence angle was determined using the computer program developed by Schwartz

and Hon called EMISS [Ref. 1: p. 9]. The required inputs into the program are

zenith angle at the reflection point of the reflected ray (0,) and a corresponding

wind speed measured at the time of the experiment. The program outputs the

zenith angle at the reflection point of the incident ray (OR) along with a value of the

emissivity (ess).

4. LSKY and LSST Measurement

In-band sky radiance reflected from the sea surface at OR (LSKY) is mea-

sured directly from the AGEMA camera and also computed using PC-TRAN. An

IBM-PC computer program called "The Blackbody Calculator," created by Inte-

grated Sensors Incorporated, was used to calculate the radiance at the sea surface

temperature (LssT) [Fig. 4.6] [Ref. 13]. Inputs to the program include temperature

(Kelvin), bandpass of the AGA scanner (8-14 pm), emissivity, and the total radi-

ance band of the black body curve. The program computes the in-band radiance

by integration of Planck's radiation law for the input source temperature, emissiv-
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ity and bandpass. The total in-band radiance, assuming a Lambertian surface, is

determined by dividing the bandpass flux by a factor of 7r.

5. Lssi and TBR Measurement

Total in-band radiance from the sea surface (LssE) consists of the in-

band radiance due to the surface temperature (LssT) multiplied by the sky radiance

incident on the surface (LSKY) which will be reflected into the sensor with a reflec-

tivity (pss), Equation (2.13). Other factors such as transmittance and radiance

effects between the AGA camera and the sea surface must be taken Into account in

the calculation of LssE. First a radiance temperature (TBR) corresponding to the

total sea surface radiance (LssE) was calculated:

TBR = [LssE - LSSTI/ 1 /7 T= I + TSST (4.1)

where:

TBR - TSST =AT

TBR is a blackbody temperature which gives the same in-band radiance as the target

of interest. TBR was used in PC-TRAN in the radiance mode to calculate a radiance

value at the AGEMA camera.

6. In-band Blackbody Temperature (TBB)

Radiant emittance values are converted to in-band blackbody tempera-

tures by inversion of the Stefan-Boltzmann Law:

TBB = /( T)/Aq a (4.2)

where:

TBB = In - band blackbody temperature

W(T) = Radiant emittance
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= 5.6697 * 10-1 2 [watts/cm2 K 4]

Aq = % of radiant emittance in wavelength of interest

The proportional radiation or percentage of radiant emittance in the

wavelength of interest (Aq) is read from Table 4.6. If the longer wavelength (14

jm) is selected for A1 and the shorter wavelength (8 pm) selected for A2 , then

the difference between the radiation values q, and q2 gives the desired proportional

radiation Aq = q, - q2 [Ref. 14: pp. 54-55].

7. Lssc and LSSM Measurement

Calculated sea surface radiance (Lssc) is compared to radiance measured

directly using the AGEMA camera (LssM) at selected viewing angles. For the

calculation of Equation (2.14),

LSSE = (ess * LSST) + (pss * LSKY) (2.14)

LSSE is evaluated with Sky Radiance (LSKY) computed using PC-TRAN in radiance

mode at the calculated Schwartz-Hon effective incidence angle obtained using the

EMISS program. ess and Pss are also obtained from the EMISS program. The sea

surface radiance (LssT) is computed using the following equation:
LssT = Wss(Tss)(1 - Pss) (4.3)

7r

where:

Wss = aT 4 = blackbody radiant exitance of the sea surface

This calculated radiance value is compared to the radiance value mea-

sured using the AGEMA camera (LssM) at the selected viewing angle. LssM is cal-

culated by taking the apparent sea surface temperature measured with the AGEMA

camera (LssT) at the effective viewing angle (OR) and converting it to a correspond-

ing radiance value.
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8. Tssc and TSSM Measurement

Radiance values Lssc and LssM were converted to equivalent blackbody

temperature values Tssc and TSSM using Equation (4.2).
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V. DATA ANALYSIS, RECOMMENDATIONS
AND CONCLUSIONS

A. INTRODUCTION

In this chapter, radiance values obtained with the AGEMA Thermovision

camera will be compared to values given by the PC-TRAN computer program.

Effects such as wind speed, sky conditions, and vertical profile data will be discussed

and compared to previous experiments.

1. PC-TRAN Inputs

The inputs to the PC-TRAN program are shown in Table 4.1. The

radiosonde data that was entered consisted of 34 (software limited) atmospheric

levels approximately 140 m apart beginning at an altitude of 6 meters. Radiosonde

launch time was approximately 12 min after the AGEMA thermal radiance values

were obtained.

2. Validation of the Schwartz-Hon Model

The method used in the validation of the Schwartz-Hon algorithm is as

follows:

1. The reflection angle (0,) of the sky radiance was obtained by subtracting the
viewing angle (0v) from 1800.

2. Effective incidence angle (OR) and emissivity (ess) were obtained from the
computer program EMISS using the Schwartz-Hon computer model and the
wind speed at the experiment site.

3. Sky radiance (LsKY) was computed for the reflection angle (OR) by measuring
spot temperatures with the AGEMA camera and applying Equation (2.1),
Planck's Law. A value of sky radiance is also computed using PC-TRAN and
Equation (2.14).
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4. The radiance emitted by the sea surface (LSST) was computed using the sea
surface temperature, emissivity from the EMISS program, and Equation (2.1),
Planck's Law.

5. Total radiance emitted by the sea surface (LssE) was computed using Equation
(2.14), where LsKY is measured using the AGA, LSST is calculated using the
measured sea surface temperature and the emissivity value coming from the
EMISS program.

6. TBR, Equation (4.1), was used as a target for PC-TRAN executed in the
radiance mode.

7. Computed reflected sky radiance (Lssc) was found using Equation (2.14) with
PC-TRAN computed sky radiance (LSKY).

8. The radiance measured with the AGEMA camera (LssM) was compared to
the radiance calculated using the Schwartz-Hon model (Lssc).

9. The radiance measured with the AGEMA camera (LssM) was compared to
the radiance calculated using the Shapiro algorithm (Lssc).

B. DATA ANALYSIS AND RESULTS

The analysis of the experiment presented in Chapter IV yields some useful

results:

The first set of data (Tables 5.1-5.6) show the temperature and radiance

values of the AGEMA thermal images taken on May 2, 1990, from 1030 to 1230

local time. The radiosonde release of 1010 local was used to apply to PC-TRAN.

The table shows spot temperatures and equivalent radiances measured with vertical

movement of the curser on a picture file obtained at zero baseline elevation, with the

horizon estimated (as previously described) at 90.025 degrees from zenith. Table 5.1

shows a zero elevation angle with subsequent tables increasing the elevation angle

in increments of 2.80. The zenith angle of the apparent horizon is greater than 900

due to the refractive index of the atmosphere explained in Chapter II. The data sets

were collected between 1030 and 1230 hours local under clear sky conditions. The

AGEMA camera was calibrated 6 days before the experiment and the constants are

listed in Table 3.1.
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1. Sky Radiance Comparison

The sky radiance computed using PC-TRAN is compared with that mea-

sured using the AGEMA camera, and the results are shown in Tables 5.7 and 5.8

along with Figures 5.1 and 5.2. The thermal radiance values show a decrease in

temperature with elevation angle which corresponds to the altitude variation of tem-

perature in the radiosonde profile. The maximum value of the radiance was 4.5837

mW/cm2 -sr at a view angle of 89.0750 and a minimum was 2.8775 mW/cm2 -sr at

7.4375*. The mean error between AGEMA and PC-TRAN for zenith angles between

850 and 900 is 5.01% and 13.58% for angles between 750 and 850. This compares fa-

vorably with experiments performed under clear sky conditions in November of 1987

and July of 1988. In November, the mean error for zenith angles between 850 and

900 was 5.11% and for angles between 750 and 850, 27.75%. In July the errors were

9.13% and 7.52%, respectively. Both measured and computed sky radiance values

show a monotonic and closely parallel increase with elevation angle from 740 to 890,

with about a 10% under estimation in the calculation. Above 890, the measured

value shows a significant drop (4c).

Better radiance values were expected in the May experiment because

of the recent calibration of the AGEMA camera and the fact that the radiosondes

were launched minutes after the images were taken rather than hours as in previous

years.

2. Schwartz-Hon Validation

Table 5.9 lists the figures used in the final calculations of Lssc using

PC-TRAN and Lssf using the Schwartz-Hon algorithm. Figure 5.3 summarizes

the results using the Statgraphics program on the Macintosh SE/30 computer. Fig-

ure 5.4 shows the radiance values that were converted to in-band blackbody tem-

peratures using Equation (4.2). There are no distinguishable patterns in Figures
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5.3 and 5.4 that would prove that the Schwartz-Hon algorithm is degraded at low

grazing angles. The average deviation of the sea surface radiance predicted in the

Schwartz-Hon model with LOWTRAN was 7.94%. This compares favorably with

the 14 and 15 July 1988 experiments which had average deviations of 4.65% and

3.24%, also on clear sky days.

Table 5.11 and Figure 5.7 show a synopsis of all the experiments con-

ducted in the last three years on the Schwartz-Hon validation. With similar sky

conditions, the curves are nearly identical in shape with varying distance between

them. As noted by Ridgeway [Ref. 3] and Psihogios [Ref. 4], a probable cause of the

error between the algorithm and the measured values of radiance may be the wind

speed and errors due to observation techniques and measurements. Since emissivity

is purely a function of surface roughness and view angle and sea surface radiance de-

pends on the emissivity, varying wind speed can be expected to change the radiance

values. Figure 5.8 shows a graph of percentage error between Lssc and LSSM as a

function of wind speed. Regression lines calculated from the data in Table 5.12 show

no clear dependence on wind speed on percentage error between LsSC and Lsskf

so it may be concluded that the Schwartz-Hon model has adequately accounted for

wind speed. Figure 5.7 gives radiance values versus low grazing angles at various

wind speeds.

3. Shapiro Algorithm

The program "EMISS" provides an alternative algorithm for sea radiance

computation developed by Shapiro. This has been applied to our data with the

results shown in Table 5.10 and Figures 5.5 and 5.6. In comparing these results to

those obtained with the Schwartz-Hon algorithm, it can be seen that the shape of the

graphs are very similar but the difference in radiance values are much greater. The
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mean percentage error between calculated and measured radiance values is 7.94%

for Schwartz-Hon and 15.31% for the Shapiro algorithm.

4. Recommendations and Conclusions

The Schwartz-Hon algorithm for computation of emissivity and equiva-

lent specular reflection angle for a rough sea surface has been evaluated for use in

modelling of Tactical Decision Aid (TDA) ship target/background contrast. The

results obtained over a restricted range of environmental conditions (significantly,

wind speed, cloud cover, sea surface, and sky temperature) show prediction of ra-

diance contrast generally in the range of 2 to 13% deviation from radiometric mea-

surement. This is considered sufficiently accurate to recommend further use of the

algorithm in development of predictive models for environment sensitive target input

for TDA use. However, due to limited data base with the wide potential variations

of the uncontrolled environmental parameters, reservations must be retained pend-

ing expansion of the data base to many more observations with a wider range of

parameters, notably wind speed and atmospheric profile.

Further evaluation is also required of factors such as errors in measured

wind speed due to sensing at a location remote from the target. Direct comparison of

LOWTRAN 6 sky radiance with AGA measurement showed agreement sufficiently

close (< 15%) for use in TDA development, although again more comparisons in

the "grazing incidence" region are required. Direct comparison of the Shapiro and

Schwartz-Hon emissivity algorithms indicate errors for Shapiro about twice that of

Schwartz and Hon within the limited data base. A continuation of the measurement

series at Monterey is recommended with attention paid to a complete specification

of environmental parameters.
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APPENDIX A
FIGURES
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Figure 2.1: Transmittance through the atmosphere for a 6000 ft horizon-
tal path at sea level [Ref. 5: p. 115].
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Figure 2.2: Spectral radiant emittance of a blackbody at temperatures
ranging from 500-900 *K [Ref. 5: p. 36].
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Figure 2.3: Radiation contrast for the 8-14 pm band as a function of
target to background temperature difference [Ref. 6: p. 29].
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Figure 2.4: Planck's law for spectral radiant emittance at three back-
ground temperatures [Ref 6: p. 23].
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DUAL. SCANNIER tam' c
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LW BLACK/WIE MONITOR CHASSIS

Figure 3.1: Thermovision 789 Series with TIC 8000 and CATS E software
package.
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1. POWER 8. CONTRAST
2. LED 8s. CONTRAST PRESET3. FOCUS 9. THERMAL RANGE
4- UNE/BATT 10. THERMAL LEVEL
1. POWER LED 11. THERMAL LEVEL ADJ.

6. PHOTO 12. PICTURE MODE
7. BRIGHTNESS 13. ISOTHERM LEVEL 1
7a. BRIGHTNESS PRESET 14. ISOTHERM LEVEL 2

15. ISOTHERM WIOTH
16. ISOTHERM SCALE

Item Description Function1 ~ ~ ~ ~ ~ -f -W~ Jh sp- UiF button controls thei-
1 POWERl Ibis push1NUFitKnroste

ac supply to the M11V 780 system.
9 1UEMAL RANGE This nine position switch selects the

thermal span of interest. The switch
is calibrated between 2 and 100 IU.

10 TMMW LEVEL This control sets the thermal level of
the thermal image.

11 TMMER L L. ADJ This control provides fine adjusment
_for calibration of the ther:2 level

Figure 3.2: Black and white monitor chassis showing location of power,
thermal range, and thermal level.
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THERMAL.
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NOTE: I i
THERMAL LEVEL=L 'BLACKBODY TEMPEnATUBE
RELATIVE THERMAL VALUE= i
MEASURED THERMAL VALUE 1, - L + i EMP. RAtGE

Figure 3.4: Measurements utilizing the thermal level and thermal range
settings.
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Figure 3.5: Calibration curves used for translating the measured thermal
* value Io' to temperature.
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Figure 3.6: Conversion of the linear color scale with corresponding non-
linear temperature to a non-linear color scale with a linear temperature
relationship.
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Figure 4.1: A probabilistic model of the radiance of a rough sea surface.
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Figure 4.2: Emissivity vs. nadir angle [Ref. 1: p. 25].
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Figure 4.3: Average infrared reflectivity of the ocean surface 8-14 am as
a function of view angle (Ov) and wave slope angle (B) caused by changes
in wind velocity.
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Figure 4.4: Experiment site.
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TC-- CURRENT WAVE HEIGHT [mlH=HEIGHT OF CAMERA=HC+HD+Tc [m]
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INCIDENT RAY (DEG) (SKY RADIANCE OUTPUT FROM
SCHWARTZ AND HON)

= WAVE TILT (DEG)
Nf=NORIAL TO TILTED SMOOTH WATER SURFACE
Nt=NORMAL TO TANGENT PLANE OF EATHS
SZRF ACE = 0 DEGREE ELEVATION ANGLE

Figure 4.5: AGA set up picture inputs to the Schwartz-H1on1 algorithm.
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RADIANCE CO(IPARISON BETWEEN A6A AND PC-TRAN
.0048 - -

.0046. - - -

0040R K1 NC (Wcm2-sr)
03 P, -TRAN ADIANCE (W/cm'2-sr)

_____A A6A RADI NCE (W/cm2-sr)

.0034 - - - -

84 85 86 87 68 89 90 91
ZENITH ANGLE (DEGREES)

Figure 5.1: Sky radiance comparison between AGA and PC-TRAN mea-
sured radiance for zenith angles between 85-90 degrees (May 2, 1990).
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RADIANCE COIPARISON BETWEEN A6A AND PC-TRAN
.0042 -

.004 -
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.0033---
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.0022

74 76 78 80 82 84 86
ZENITH ANGLE (DEGREES)

Figure 5.2: Sky radiance comparison between AGA and PC-TRAN mea-
sured radiance for zenith angles between 75-85 degrees (May 2, 1990).

SEA SURFACE RADIANCE RESULTS
.0044 _ CA CULA TOD (S&H) vs MEASURED (A, 3A)
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~ .0039 -P, DIAlCE (PC-TRAN)

59.8 90 90.290.490.690.8 91 91.291.491.691.8
VIEW ANGLE (DEGREES)

Figure 5.3: Calculated vs. measured radiance using the Schwartz-Hon
algorithm at low grazing angles (May 2, 1990).
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CALCULATED (Tsc) vs MEASURED (Tssm)267 ..... - -
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Figure 5.4: Calculated vs. measured effective in-band blackbody sea sur-
face temperature at low grazing angles using the Schwartz-Hon algorithm
(May 2, 1990).
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Figure 5.5: Calculated vs. measured radiance using the Shapiro algo-
rithm and PC-TRAN at low grazing angles (May 2, 1990).
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Figure 5.6: Calculated vs. measured effective in-band blackbody sea
surface temperature at low grazing angles using the Shapiro algorithm
(May 2, 1990).
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APPENDIX B
TABLES

Table 2.1

Values of the Spectral Integral of the Thermal Derivative of
Planck's Law for Wavelengths Ranging from 3-14 um

[Ref. 6: p. 28]

aW f X2 W X T B ) '- - -aT X aT5 d [2 Kfo

8W- - = w (T d Lcm J for

),1[m] ) X2 [Pm] TB = 2800 K TB = 2900 K TB = 3000 K TB = 310 0 K

3 5 1.1 X 10-5  1.54 X 10-5  2.1 X 10-5  2.81 X 10-5

3 5.5 2.01 X 10-5  2.73 X 10-5  3.62 X 10-5  4.72 X 10-5

3.5 5 1.06 X 10-5  1.47 X 10-5  2 X 10-5  2.65 X 10-5

3.5 5.5 1.97 X 10-5  2.66 X 10-5  3.52 X 10-5  4.57 X 10- 5

4 5 9.18 X 10-6  1.26 X 10-5  1.69 X 10-5  2.23 X 10-5

4 5.5 1.83 X 10-5  2.45 X 10-5  3.22 X 10-5  4.14 X 10-5

8 10 8.47 X 10-5  9.65 X 10-5  1.09 X 10-4  1.21 X 10-4

8 12 1.58 X 10-4  1.77 X 10-4  1.97 X 10-4  2.17 X 10-4

8 14 2.15 X 10-4  2.38 X 104  2.62 X 10-4  2.86 X 10-4

10 12 7.34 X 10-5  8.08 X 10-5 8.81 X 10-5  9.55 X 10-5

10 14 1.3 X 10-4  1.42X 10- 1.53X 10-4  1.65X 10-5

12 14 5.67 X 10.5 6.10 X 10-5  6.52 X 10-5  6.92 X 10-5
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Table 3.1

Individual Calibration of the 780 Dual Scanner

LAGEMA
Infrared Systems

INDIVIDUAL CALIBRATION OF: 780 LWB

SERIAL NUMBERS

Scanner : 4011

Detector • IMB

Filter : NOF

Lens : 3.5, s/n 8121

CALIBRATION CONDITIONS

Ambient Temperature : 220C

Relative Humidity : 50%

Objective Distance : 2m

Calibration Date : 4/26/90

Operator : Al Fudali

CALIBRATION CURVE CONSTANTS

Aperture A B C

1.8 -2514 1654 -0.2
2.5 -2260 1705 -0.3

3.6 -1304 1876 -0.2
5.1 -1193 1933 -0.3
7.2 -1973 1940 -1.0
10 900 1802 1.0
14 -3847 2122 -4.3
20 - 207 2546 -0.2
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Table 4.1

PC-TRAN Inputs

* Indicates input used in Schwartz-Hon Model analysis.

1. ATMOSPHERIC MODEL
A.Specify meteorological data
B.Tropical model atmosphere
C.Midlatitude summer
D.Midlatitude winter
E.Subarctic summer
F. Subarctic winter
G.1962 U.S. standard

*H.Radiosonde data

2. TYPES OF ATMOSPHERIC PATH
A.Horizontal

*B.Vertical or slant path between two altitudes

C.Vertical or slant path to space

3. MODES OF EXECUTION
A.Transmittance mode

*B.Radiance mode

4. SPECIFY TEMPERATURE/PRESSURE ALTITUDE PROFILES TO BE
USED

*A.Normal

5. SPECIFY WATER VAPOR ALTITUDE PROFILE USED
*A.Normal

6. OZONE PROFILE
*A.Normal
B.Tropical
C.Midlatitude summer
D.Midlatitude winter
E. Subarctic summer
F. Subarctic winter
G.1962 U.S. standard atmosphere

7. SPECIFY NORMAL OPERATIONS OR RADIOSONDE DATA WILL BE
USED EITHER INITIALLY OR ON SUBSEQUENT RUNS

A.Normal
*B.Radiosonde

8. SPECIFY NORMAL OPERATIONS OR SUPPRESS PRINTING
*A.Normal
B.Suppress printing

9. TEMPERATURE OF THE EARTH AT THE LOCATION AT WHICH
CALCULATION IS TO BE PERFORMED
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*A(from data)

10. SPECIFY THE SURFACE ALBEDO OF THE EARTH
*A.Assume blackbody default

11. EXTINCTION TYPE
A.No aerosol attenuation
B.Rural extinction, 23 km VIS
C.Rural extinction, 5 km VIS

*D.Navy maritime
E.Maritime, 23 km VIS
F. Urban, 5 km VIS
G.Troposphere, 50 km VIS
H.User defined
I. Fog 1, 0.2 km VIS
J. Fog 2, 0.5 km VIS

12. SEASONAL DEPENDENCE OF PROFILES
*A.Default to season of model
B. Spring/summer
C.Fall/winter

13. PROFILE AND EXTINCTION FOR STRATOSPHERIC AEROSOLS
*A.Default to stratospheric background
B.Stratospheric background
C.Aged volcanic type/moderate volcanic profile
D.Fresh volcanic type/high volcanic profile
E.Aged volcanic type/high volcanic profile

14. SPECIFY AIR MASS CHARACTER
A.Open ocean

*B.3

J. Strong continental influence

15. DETERMINE THE INCLUSION OF CIRRUS ATTENUATION
*A.No cirrus
B.Use cirrus profile

16. U.S. ARMY VERTICAL STRUCTURE ALGORITHM (not used)

17. SPECIFY METEOROLOGICAL RANGE (km) (default)

18. CURRENT WIND SPEED (from data)

19.24 HOUR AVERAGE WIND SPEED (from data)

20. PRECIPITATION RATE (0 from data)

21. ATMOSPHERIC LEVELS
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*A.Initial altitude (0 at target)
*B.Final altitude (0 at target
*C.Initial zenith angle as measured from the initial altitude (OR from Schwartz-

Hon)
D.Path length
E.Earth center angle subtended by the inital and final altitudes

22. RADIUS OF THE EARTH
A.Specify radius

*B.Default (6371.23 kin)

23. PROGRAM OPERATION
*A.Normal program operation
B.Select downward type two long path

24. SPECTRAL RANGE (corresponds to 8-12 pm band)
*A.Initial frequency (833.0 cm - 1)
*B.Final frequency (1250 cm -1 )
*C.Frequency increment (5 cm-1 )
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Table 4.2

Shipboard Meteorological Readings
R/V POINT SUR

May 2, 1990

Wind Wind SS DP Air
Lat Long Time Dir Spd Temp Temp Rel Temp
(N) (W) Month Day (Z) (0) (m/s) (OC) (OC) Hum (*C)

36-36.6 121-152.8 5 2 1807 090 1.49 10.37 10.02 9.56 13.89
36-36.6 121-152.8 5 2 1812 097 1.46 10.34 9.53 9.48 13.71
36-36.6 121-152.8 5 2 1817 157 1.60 10.45 9.70 9.51 13.70
36-36.9 121-152.8 5 2 1822 131 1.79 10.82 9.69 9.27 14.16
36-37.0 121-152.8 5 2 1827 023 3.05 11.85 9.61 8.62 14.20
36-37.0 121-152.8 5 2 1832 031 3.05 12.45 9.30 8.12 13.94
36-37.0 121-152.8 5 2 1837 136 2.99 12.86 9.03 7.76 13.83
36-37.4 121-153.3 5 2 1842 131 2.66 13.23 9.02 7.57 14.15
36-37.8 121-154.1 5 2 1847 131 2.59 13.95 9.27 7.34 13.83
36-38.2 121-155.0 5 2 1852 131 2.27 13.14 8.90 7.55 13.26
36-38.7 121-155.8 5 2 1857 131 2.10 11.39 8.52 8.25 12.74
36-39.0 121-156.6 5 2 1902 131 1.93 10.52 8.37 8.66 12.53
36-38.6 121-157.3 5 2 1907 131 1.86 11.73 8.33 7.97 12.06
36-37.8 121-157.8 5 2 1912 131 1.76 11.56 8.39 8.10 12.12
36-37.1 121-158.2 5 2 1917 131 1.66 10.90 8.47 8.50 11.70
36-36.4 121-158.7 5 2 1922 132 1.64 10.23 8.49 8.90 11.73
36-35.7 121-159.2 5 2 1927 131 1.63 10.06 8.45 8.97 11.07
36-35.0 121-159.6 5 2 1932 136 1.60 9.90 8.46 9.07 10.44
36-34.3 121-159.9 5 2 1937 137 1.59 10.41 8.56 8.83 10.12
36-33.6 121-159.8 5 2 1942 135 1.59 11.01 8.58 8.50 10.03
36-32.8 121-159.5 5 2 1947 133 1.61 11.11 8.53 8.41 10.11
36-32.1 121-159.3 5 2 1952 131 1.59 11.13 8.49 8.38 10.27
36-31.4 121-159.0 5 2 1957 131 1.57 11.28 8.42 8.26 10.36
36-30.6 121-158.7 5 2 2002 131 1.56 11.38 8.36 8.17 10.52
36-29.9 121-158.4 5 2 2007 131 1.53 11.56 8.30 8.04 10.71
36-29.1 121-158.3 5 2 2012 131 1.51 11.52 8.28 8.05 10.89
36-28.3 121-158.2 5 2 2017 131 1.49 11.55 8.28 8.04 10.97
36-27.5 121-158.1 5 2 2022 131 1.43 11.46 8.32 8.11 10.91
36-26.7 121-157.8 5 2 2027 131 1.42 11.49 8.24 8.05 10.70
36-26.0 121-157.6 5 2 2032 131 1.42 11.45 8.25 8.07 10.23
36-25.2 121-157.4 5 2 2037 131 1.36 11.16 8.28 8.25 10.31
36-24.3 121-157.1 5 2 2042 131 1.49 11.29 8.14 8.10 10.25
36-23.6 121-156.8 5 2 2047 131 1.49 11.11 8.08 8.16 10.24
36-23.0 121-156.4 5 2 2052 131 1.42 11.12 8.07 8.15 10.24
36-22.3 121-156.0 5 2 2057 131 1.49 11.30 8.04 8.04 10.16
36-21.5 121-155.7 5 2 2102 131 1.44 11.46 8.09 7.98 10.19
36-20.8 121-155.3 5 2 2107 131 1.39 11.64 8.00 7.84 10.18
36-20.4 121-155.0 5 2 2112 131 1.46 10.71 7.95 8.32 10.06
36-20.4 121-155.0 5 2 2117 131 1.58 9.87 7.95 8.78 10.13
36-20.3 121-155.0 5 2 2122 131 1.60 9.69 7.97 8.90 10.31
36-20.3 121-155.1 5 2 2127 131 1.63 9.66 8.02 8.96 10.38
36-20.3 121-155.1 5 2 2132 131 1.67 9.66 8.11 9.00 10.44
36-20.3 121-155.7 5 2 2137 131 1.51 9.75 8.11 8.96 10.44
36-20.4 121-156.7 5 2 2142 131 1.44 9.77 8.25 9.03 10.45
36-20.4 121-157.7 5 2 2147 131 1.39 9.77 8.27 9.04 10.62
36-20.4 121-158.6 5 2 2152 131 1.41 9.82 8.33 9.04 10.60
36-20.5 121-159.6 5 2 2157 131 1.40 9.89 8.37 9.03 10.55
36-20.5 121-100.6 5 2 2202 131 1.38 9.96 8.41 9.01 10.51
36-20.4 122-101.4 5 2 2207 131 1.33 9.99 8.38 8.98 10.49
36-20.1 122-101.8 5 2 2212 131 1.27 9.99 8.47 9.02 10.44
36-20.0 122-101.7 5 2 2217 131 1.36 9.98 8.54 9.08 10.46
36-20.0 122-101.6 5 2 2222 439 1.36 9.97 8.33 8.77 10.49
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Table 4.3
Monterey Bay Aquarium Weather and

Oceanographic Data Acquisition System
May 2, 1990

TM: Time of day (hh:mm PST) on May 2, 1990
WS: Wind speed (m/sec)
WD: Wind direction (deg T)
AT: Air temperature (deg C)
HU: % relative humidity
BA: Barometric pressure (mbars)
TH: Tidal height from NOAA tide gauge (m)

TM WS WD AT HU BA TH

10:10 3.42 324 14.16 84 1008.5 0.14
10:15 3.56 321 14.38 84 1008.4 0.13
10:20 2.34 295 14.58 83 1008.4 0.15
10:25 1.02 290 14.79 82 1008.5 0.12
10:30 0.60 269 14.87 81 1008.5 0.11
10:35 1.08 327 15.16 80 1008.4 0.08
10:40 1.05 349 15.27 79 1008.4 0.10
10:45 2.63 356 15.56 78 1008.3 0.09
10:50 2.43 356 15.70 77 1008.3 0.09
10.55 0.92 1 15.85 76 1008.3 0.08
11:00 0.75 358 16.10 75 1008.2 0.07
11:05 0.17 44 16.55 73 1008.1 0.07
11:10 0.05 85 16.85 72 1008.1 0.07
11:15 0.61 325 17.16 70 1008.1 0.06
11:20 3.75 325 17.36 69 1008.1 0.06
11:25 3.90 329 17.57 67 1008.1 0.06
11:30 2.11 308 17.88 66 1008.1 0.06
11:35 0.29 316 18.29 65 1008.1 0.07
11:40 1.29 133 18.61 65 1008.1 0.06
11:45 1.66 131 18.72 65 1008.1 0.08
11:50 1.04 120 18.94 65 1008.1 0.08
11:55 2.19 135 18.83 64 1008.1 0.09
12:00 2.35 129 18.82 64 1008.0 0.10
12:05 1.99 117 18.99 63 1008.1 0.12
12:10 2.85 133 18.92 63 1008.0 0.11
12:15 2.96 136 18.30 65 1008.0 0.13
12:20 3.41 138 17.80 66 1008.0 0.14
12:25 3.32 138 17.48 67 1007.9 0.14
12:30 2.25 137 17.15 69 1008.0 0.15
12:35 1.35 126 16.99 70 1008.0 0.19
12:40 0.60 123 17.25 70 1007.9 0.21
12:45 1.93 86 17.44 70 1007.9 0.20
12:50 1.29 118 17.56 70 1007.9 0.23
12:55 1.10 109 18.01 69 1007.9 0.26
13:00 1.70 88 18.47 68 1007.8 0.28
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Table 4.4

Radiosonde Data - R/V Point Sur
May 2, 1990

Launch time: 90 05 02 at 1947 GMT

Time Hght Press Temp Hum Td

0 0 10 1013.0 10.4 93 9.3
0 40 237 985.9 12.1 65 5.6
1 20 379 969.4 17.4 30 -0.3
2 0 498 956.0 18.7 25 -1.7
2 40 617 942.8 18.7 23 -2.8
3 20 753 928.0 18.3 23 -3.1
4 10 943 907.6 17.5 26 -2.2
5 0 1154 885.3 16.1 28 -2.4
5 50 1297 870.5 16.7 21 -5.7
6 30 1430 857.0 15.9 22 -5.8
7 10 1550 844.9 15.1 23 -5.9
7 50 1670 833.1 14.5 18 -9.5
8 30 1789 821.3 13.4 18 -10.4
8 50 1848 815.5 13.0 17 -11.5
9 40 2003 800.6 11.7 17 -12.5

10 20 2128 788.7 10.9 19 -11.8
11 0 2272 775.2 9.6 22 -11.1
11 30 2377 765.4 8.7 23 -11.3
12 0 2469 756.8 7.9 24 -11.4
12 30 2560 748.6 7.2 24 -12.0
13 10 2678 737.9 6.3 25 -12.3
13 30 2742 732.1 5.8 25 -12.7
14 10 2867 720.9 4.9 26 -13.0
15 0 3033 706.5 5.6 5 -31.2
16 0 3242 688.6 4.3 24 -14.5
16 50 3410 674.5 2.9 28 -13.8
17 30 3532 664.3 2.0 28 -14.6
18 10 3654 654.4 1.0 29 -15.1
19 0 3799 642.6 -0.3 30 -15.8
19 50 3941 631.3 -1.6 32 -16.2
20 50 4108 618.2 -2.9 38 -15.2
21 30 4218 609.6 -3.4 34 -17.0
22 20 4360 598.7 -3.9 32 -18.2
23 50 4649 577.2 -5.1 23 -23.1
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Table 4.5

Meteorological Data
Solomat Portable Measuring Unit

* Time - 1533 (Greenwich mean time)
* Air temperature - 13.4°C
" Barometer - 759.4 torr
" Wind direction - 340°T
" Wind speed - 3.58 m/sec
" Relative humidity - 85%
" Sea description - calm, sea state 1
" Sky conditions - fog, cloud layer 0-500 ft

" comments- 1113Z - horizon visible
1152Z - fog lifted, clear blue sky
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Table 4.6

Proportional Radiation Equals the Percentage of
Radiant Emittance in the Wavelength of Interest

q = f(AT) [Ref 14: pp. 54-55]

X. T X. T X.T

cm. cm.K Cm. q

0-050 1.3652.10 - 9  0.140 7-9053 .10 - 3  0-460 580S7 . 10- '
0-052 3-6788 .10 - 9  0.150 1-3023. 10- 2 0-480 6-0880. 10- 1
0.054 9.1749.10 9  0-160 1-9962.10 - 2 0.500 6.3494.10 - 1
0.056 2.13S8. 10-8 0.170 2-8858.10 - 2 0-520 6.5912.1071
0-058 4-6745 .10S 0.180 3-9754 .10 2  0-540 6.8146.107'
0.060 9.6798.10 - a 0-190 5.2613 .1072 0-560 7.0209.107'
0-062 1-9069.10 - ' 0-200 6.7331.10 - 2 0-580 7.2116.10 - 1

0064 3.5907.10 - 7  0-210 8-3750 .10
2  0-600 7-3877.10 - 1

0.066 64902.10 - 7 0-220 1.0168 .10- 1  0-620 7.5505. 1071
0-068 1.1302.10 - 6  0.230 1.2091 .10- 1  0-660 7.8402. 10- '
0-070 1.9025 .10- 6  0.240 1.4122.107 1  0-700 8.0885. 10- 1

0.072 3.1045 .10 - 6  0.250 1-6239 .107' 0-740 8.3020 .10 -

0.074 4.9236. 10-6 0-260 1-8423.10 - 1  0-780 8-4861. 10- '
0.076 7.6070. 10- 6  0-270 2-0653.101 0820 8.6455. 10- 1

0.078 1.1473. 10 -  0.280 2-2911 .10 - 1 0-860 8.7840.10 "1
0.080 1.6923. I-C 0.290 2-5183.- 10- 1 0-900 8.9048 . 10 - '
0.082 2-4453. 10_' 0-300 2-7454. 10-  0-940 9-0105. 10-

0-084 3-4668. 10- ' 0.310 2-9712.10 - 1 0-980 9-1033.10 -

0.086 48287.10 - s  0-320 3.1947.10-1 1-00 9.1455.10 -

0.088 6.6159. 10-  0.330 3.4150.10 - 1  1.10 9.3217.10 "'
0.090 8.9269 10S 0.340 3.6314.107' 1.20 9-4532.10 - 1

0.092 1-1874.10 - 4  0-350 3-8432.10 - ' 1.30 9.5331.10 -1
0.094 1.5586. 10- 4  0.360 4-0502.10 - 1  1-40 9-6304. 10 -1
0.096 2-0204.10 - 4  0-370 4.2518 .10 - 1 1-50 9.6909. 10-1
0-098 2.5885, 10 - 4  0.380 44479 .10 - 1 1.60 9 7390 . 10- 1
0.100 3.2804. 10- 4  0.390 4.6382 . 10' 1.70 9.7777 . 10 - '
0.110 9.2957.10 4  0-400 4.8227.10 - ' 1-80 9-8091.10 - 1
0.120 2.1727. 10- 3  0-420 5-1738. 10- ' 1-90 9.8349. 10-1
0.130 4-3866. 10- 3  0-440 5-5012 10- ' 2-00 9.8563. 10- 1
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Table 5.1

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 48 Time: 1128L Elevation Angle: 0
Bandwidth: 8-14 pm Horizon: pixel line #67 Lens: 3.* FOV

Meteorological Data
R/V Point Sur Monterey Bay Buoy AGEMA Camera

Time: 1127L Time: 1130L Time: 1128L
Range: .5 miles Range: 1 mile Scanner: 780
Air Temp: 11.0700 Air Temp: 17.88 Serial No: 4011
SS Temp: 10.0600 Wind Speed: 2.11 rn/sec FOV: 3.*
Wind Speed: 1.63 rn/s Wind Dir: 3080 Filter: NOF
Wind Dir: 1310 Rel Humid: 66% Aperture: 1.8
Dew Point: 8.4500 Pressure: 1008.1 MB Thermal Range: 10
Rel Humid: 89.7 Thermal Level: 37.1
Sky: Clear Emissivity: .97

Transmittance: .84

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/CM2 .sr)

3 88.375 16.6 4.5200E-3
7 88.475 16.7 4.5200E-3

11 88.575 16.9 4.5518E-3
15 88.675 17.0 4.5518E-3
19 88.775 17.3 4.5830E-3
23 88.875 17.3 4.5830E-3
27 88.975 17.4 4.5837E-3
31 89.075 17.4 4.5847E-3
35 89.175 17.3 4.5830E-3
39 89.275 16.6 4.5200E-3
43 89.375 14.8 4.3926E-3
47 89.475 14.6 4.3926E-3
51 89.575 14.5 4.3608E-3
55 89.675 14.4 4.3608E-3
59 89.775 14.7 4.3926E-3
63 89.875 14.8 4.3926E-3
65 89.925 14.8 4.3926E,3
66 89.950 15.1 4.4245E-3
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Table 5.1 (continued)

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/cm 2-sr)

67 89.975 15.1 4.4245E-3
68 90.000 14.8 4.3926E-3
69 90.025 14.5 4.3608E-3
70 90.050 13.9 4.3290E-3
71 90.075 13.5 4.2971E-3
75 90.175 13.2 4.2653E-3
79 90.275 12.8 4.2335E-3
83 90.375 12.2 4.2001E-3
87 90.475 12.1 4.2016E-3
91 90.575 11.8 4.1698E-3
95 90.675 11.4 4.1380E-3
99 90.775 11.4 4.1380E-3

103 90.875 11.5 4.1698E-3
107 90.975 11.4 4.1698E-3
111 91.075 11.6 4.1380E-3
115 91.175 11.3 4.1698E-3
119 91.275 11.5 4.1380E-3
123 91.375 11.6 4.1698E-3
127 91.475 11.8 4.1698E-3
131 91.575 11.6 4.1698E-3
135 91.675 11.4 4.1698E-3
139 91.775 11.9 4.1380E-3
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Table 5.2

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 52 Time: 1132L Elevation Angle: 2.80

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) (W/cm2 -sr)

3 85.575 10.0 4.0425E-3
7 85.675 10.2 4.0744E-3

11 85.775 10.4 4.0744E-3
15 85.875 10.7 4.1062E-3
19 85.975 11.0 4.1062E-3
23 86.075 11.3 4.1380E-3
27 86.175 11.6 4.1699E-3
31 86.275 12.0 4.2017E-3
35 86.375 12.3 4.2017E-3
39 86.475 12.6 4.2335E-3
43 86.575 12.8 4.2335E-3
47 86.675 13.1 4.2654E-3
51 86.775 13.4 4.2972E-3
55 86.875 13.7 4.2972E-3
59 86.975 13.9 4.3290E-3
63 87.075 14.3 4.3608E-3
67 87.175 14.6 4.3927E-3
71 87.275 14.8 4.3927E-3
75 87.375 14.9 4.3927E-3
79 87.475 15.0 4.4245E-3
83 87.575 15.3 4.4563E-3
87 87.675 15.6 4.4563E-3
91 87.775 15.9 4.4882E-3
95 87.875 16.1 4.4882E-3
99 87.975 16.1 4.5200E-3

103 88.075 16.5 4.5200E-3
107 88.175 16.6 4.5200E-3
111 88.275 16.7 4.5518E-3
115 88.375 16.6 4.5518E-3
119 88.475 16.7 4.5518E-3
123 88.575 16.9 4.5837E-3
127 88.675 17.0 4.5837E-3
131 88.775 17.3 4.5837E-3
135 88.875 17.3 4.5837E-3
139 88.975 17.4 4.5837E-3
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Table 5.3

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 53 Time: 1133L Elevation Angle: 5.6

Meteorological Data
R/V Point Sur Monterey Bay Buoy AGEMA Camera

Time: 1132 Time: 1135 Time: 1133
Range: .5 miles Range: 1 mile Scanner: 780
Air Temp: 11.07 Air Temp: 18.290C Serial No: 4011
SS Temp: 9.900C Wind Speed: .29 m/sec FOV: 3.5*
Wind Speed: 1.59 m/sec Wind Dir: 3160 Filter: NOF
Wind Dir: 1350 Rel Humid: 65% Aperture: 1.8
Dew Point: 8.56 Thermal Range: 10
Rel Humid: 88.3% Thermal Level: 31.3

Transmittance: .84

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) (W/cm 2 -sr)

3 82.775 3.4 3.6287E-3
7 82.875 3.7 3.6287E-3

11 82.975 3.8 3.6287E-3
15 83.075 4.0 3.6606E-3
19 83.175 4.2 3.6606E-3
23 83.275 4.3 3.6606E-3
27 83.375 4.6 3.6924E-3
31 83.475 4.7 3.6924E-3
35 83.575 5.0 3.7242E-3
39 83.675 5.0 3.7242E-3
43 83.775 5.4 3.7561E-3
47 83.875 5.7 3.7561E-3
51 83.975 5.9 3.7879E-3
55 84.075 6.1 3.7879E-3
59 84.175 6.3 3.7879E-3
63 84.275 6.7 3.8197E-3
67 84.375 6.8 3.8515E-3
71 84.475 7.1 3.8515E-3
75 84.575 7.4 3.8834E-3
79 84.675 7.6 3.8834E-3
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Table 5.3 (continued)

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/cm2 -sr)

83 84.775 8.0 3.9152E-3
87 84.875 8.2 3.9152E-3
91 84.975 8.6 3.9470E-3
95 85.075 9.1 3.9789E-3
99 85.175 9.4 3.9789E-3

103 85.275 9.8 4.0107E-3
107 85.375 10.3 4.0107E-3
111 85.475 10.5 4.0425E-3
115 85.575 10.8 4.0744E-3
119 85.675 11.0 4.0744E-3
123 85.775 11.4 4.1062E-3
127 85.875 11.6 4.1062E-3
131 85.975 12.0 4.1380E-3
135 86.075 11.4 4.1699E-3
139 86.175 11.6 4.2017E-3
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Table 5.4

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 54 Time: 1134 Elevation Angle: 8.4

Meteorological Data
R/V Point Sur Monterey Bay Buoy AGEMA Camera

Time: 1132 Time: 1135 Time: 1134
Range: .5 miles Range: 1 mile Scanner: 780
Air Temp: 11.07'C Air Temp: 18.29 Serial No: 4011
SS Temp: 9.90*C Wind Speed: .29 m/sec FOV: 3.5*
Wind Speed: 1.60 m/sec Wind Dir: 3160 Filter: NOF
Wind Dir: 1360 Rel Humid: 65% Aperture: 1.8
Dew Point: 8.450C Pressure: 1008.1 mb Thermal Range: 10
Rel Humid: 89.7% Thermal Level: 26.9

Emissivity: .97

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) (W/cm2 -sr)

3 79.975 -1.6 3.3104E-3
7 80.075 -1.3 3.3104E-3

11 80.175 -1.1 3.3423E-3
15 80,275 -1.1 3.3423E-3
19 80.375 -1.0 3.3423E-3
23 80.475 -. 9 3.3741E-3
27 80.575 -. 6 3.3741E-3
31 80.675 -. 3 3.3741E-3
35 80.775 -. 2 3.4059E-3
39 80.875 0 3.4059E-3
43 80.975 .2 3.4377E-3
47 81.075 .4 3.4377E-3
51 81.175 .5 3.4377E-3
55 81.275 .7 3.4696E-3
59 81.375 .9 3.4696E-3
63 81.475 1.2 3.4696E-3
67 81,575 1.2 3.5014E-3
71 81,675 1.4 3.5014E-3
75 81.775 1.7 3.5332E-3
79 81.875 1.9 3.5332E-3
83 81.975 2.0 3.5332E-3
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Table 5.4 (continued)

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/CM2 _sr)

87 82.075 2.2 3.5651E-3
91 82.175 2.5 3.5651E-3
95 82.275 2.8 3.5969E-3
99 82.375 3.0 3.5969E-3

103 82.475 3.1 3.6287E-3
107 82.575 3.4 3.6287E-3
ill 82.675 3.6 3.6287E-3
115 82.775 3.8 3.6606E-3
119 82.875 4.1 3.6606E-3
123 82.975 4.3 3.6606E-3
127 83.075 4.5 3.6606E-3
131 83.175 4.9 3.7242E-3
135 83.275 5.0 3.7242E-3
139 83.375 5.3 3.7242E-3
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Table 5.5

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 55 Time: 1135 Elevation Angle: 11.2

Meteorological Data
R/V Point Sur Monterey Bay Buoy AGEMA Camera

Time: 1137 Time: 1135 Time: 1135
Range: .5 miles Range: 1 mile Scanner: 780
Air Temp: 10.440C Air Temp: 18.29 Serial No: 4011
SS Temp: 9.900C Wind Speed: .29 m/sec FOV: 3.50
Wind Speed: 1.60 m/sec Wind Dir: 3160 Filter: NOF
Wind Dir: 1360 Dew Point: 65% Aperture: 1.8
Dew Point: 8.450C Pressure: 1008.1 mb Thermal Range: 10
Rel Humid: 89.7% Thermal Level: 22.7

Emissivity: .97
Transmittance: .84

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) (W/cm -sr)

3 77.175 -5.9 3.0494E-3
7 77.275 -5.7 3.0590E-3

11 77.375 -5.6 3.0653E-3
15 77.475 -5.4 3.0781E-3
19 77.575 -5.3 3.0812E-3
23 77.675 -5.1 3.0940E-3
27 77.775 -4.9 3.0940E-3
31 77.875 -4.9 3.1067E-3
35 77.975 -4.6 3.1067E-3
39 78.075 -4.5 3.1226E-3
43 78.175 -4.3 3.1290E-3
47 78.275 -4.1 3.1417E-3
51 78.375 -3.9 3.1513E-3
55 78.475 -3.9 3.1640E-3
59 78.575 -3.7 3.1640E-3
63 78.675 -3.5 3.1767E-3
67 78.775 -3.3 3.1831E-3
71 78.875 -3.2 3.2149E-3
75 78.975 -2.9 3.2149E-3
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Table 5.5 (continued)

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/cm2 -sr)

79 79.075 -2.9 3.2149E-3
83 79.175 -2.6 3.2149E-3
87 79.275 -2.4 3.2468E-3
91 79.375 -2.3 3.2468E-3
95 79.475 -2.1 3.2468E-3
99 79.575 -2.0 3.2786E-3

103 79.675 -1.9 3.2786E-3
107 79.775 -1.6 3.2786E-3
111 79.875 -1.4 3.3104E-3
115 79.975 -1.2 3.3104E-3
119 80.075 -1.1 3.3423E-3
123 80.175 -1.1 3.3423E-3
127 80.275 -. 7 3.3423E-3
131 80.375 -. 7 3.3423E-3
135 80.475 -. 4 3.3741E-3
139 80.575 -. 3 3.3741E-3
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Table 5.6

Temperature and Radiance of Thermal Image

Date: May 2, 1990 Image Number: 56 Time: 1135 Elevation Angle: 14.0

Meteorological Data
R/V Point Sur Monterey Bay Buoy AGEMA Camera

Time: 1137 Time: 1135 Time: 1135
Range: .5 miles Range: 1 mile Scanner: 780
Air Temp: 10.440C Air Temp: 18.29 Serial No: 4011
SS Temp: 9.90*C Wind Speed: .29 m/sec FOV: 3.50
Wind Speed: 1.60 m/sec Wind Dir: 3160 Filter: NOF
Wind Dir: 1360 Dew Point: 65% Aperture: 1.8
Dew Point: 8.45*C Pressure: 1008.1 mb Thermal Range: 10
Rel Humid: 89.7% Thermal Level: 21.0

Emissivity: .97
Transmittance: .84

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) (W/cm2-sr)

3 74.375 -8.9 2.8775E-3
7 74.475 -8.8 2.8839E-3

11 74.575 -8.8 2.8839E-3
15 74.675 -8.5 2.8998E-3
19 74.775 -8.5 2.8998E-3
23 74.875 -8.4 2.9062E-3
27 74.975 -8.3 2.9125E-3
31 75.075 -8.1 2.9221E-3
35 75.175 -8.0 2.9285E-3
39 75.275 -7.8 2.9285E-3
43 75.375 -80 2.9411E-3
47 75.475 -7.6 2.9507E-3
51 75.575 -7.5 2.9571 E-3
55 75.675 -7.4 2.9635E-3
59 75.775 -7.4 2.9635E-3
63 75.875 -7.2 2.9730E-3
67 75.975 -7.0 2.9857E-3
71 76.075 -6.9 2.9921E-3
75 76.175 -6.7 3.0017E-3
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Table 5.6 (continued)

Image Line Zenith Angle Spot Temperature Radiance
Number (degrees) (degrees C) W/cm2 -sr)

79 76.275 -6.5 3.0144E-3
83 76.375 -6.4 3.0176E-3
87 76.475 -6.2 3.0303E-3
91 76.575 -6.2 3.0303E-3
95 76.675 -5.9 3.0494E-3
99 76.775 -5.7 3.0590E-3

103 76.875 -5.5 3.0717E-3
107 76.975 -5.5 3.0717E-3
111 77.075 -5.3 3.0812E-3
115 77.175 -5.1 3.0940E-3
119 77.275 -4.9 3.1067E,-3
123 77.375 -4.8 3.1131E-3
127 77.475 -4.6 3.1226E,-3
131 77.575 -4.5 3.1290E-3
135 77.675 -4.3 3.1417E-3
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Table 5.7

Radiance Comparison Between
The AGEMA Camera and PC-TRAN

May 2, 1990

Angles from 75*-85* FOV: 3.5* 24 Hours Average Wind Speed: 1.63 rn/sec

Zenith Boundary AGA Radiance PC-TRAN Radiance % Error
Angle (*) Temp (*K) (W/ cni-sr) (W/cm 2 _sr) AGA/PC-TRAN

85.075 282.1 3.9789E-3 3.612E-3 9.22
84.575 280.4 3.8834E-3 3.513E-3 9.53
84.075 279.1 3.7879E-3 3.419E-3 9.73
83.575 278.0 3.7242E-3 3.332E-3 10.53
83.175 277.2 3.6606E-3 3.265E-3 10.80
82.775 276.8 3.6287E-3 3.202E-3 11.75
82.275 275.8 3.5969E-3 3.128E-3 13.04
81 .775 274.7 3.5332E-3 3.059E-3 13.42
81.275 273.7 3.4696E-3 2.992E-3 13.77
80.775 272.8 3.4059E-3 2.931E-3 13.94
80.275 272.3 3.3423E-3 2.872E-3 14.07
79.775 271.4 3.2786E-3 2.817E-3 14.07
79.275 270.6 3.2468E-3 2.764E-3 14.87
78.675 269.3 3.1767E-3 2.705E-3 13.37
78.075 268.5 3.1226E-3 2.649E-3 14.73
77.975 267.7 3.1067E-3 2.572E-3 16.52
77.575 267.9 3.0812E-3 2.605E-3 14.84
76.675 267.1 3.0590E-3 2.531E-3 15.41
76.075 266.1 2.9921E-3 2.485E-3 16.95
75.475 265.4 2.9507E-3 2.442E-3 17.24
74.875 264.6 2.9024E-3 2.400E-3 17.32
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Table 5.8

Radiance Comparison Between
The AGEMA Camera and PC-TRAN

* May 2, 1990

Angles from 85*-90* FOV: 3.* 24 Hours Average Wind Speed: 1.63 rn/sec

Zenith Boundary AGA Radiance PC-TRAN Radiance % Error
Angle (*) Temp (*K) (W/cm 2 .sr) (W/cm 2 _sr) AGA/PC-TRAN

89.975 288.1 4.4245E-3 4.376E-3 1.10
89.875 287.8 4.3926E-3 4.387E-3 .13
89.475 287.6 4.3926E-3 4.410E-3 .39
89.075 290.4 4.5836E-3 4.408E-3 3.83
88.675 290.0 4.5518E-3 4.376E-3 3.86
88.375 289.6 4.5200E-3 4.334E-3 4.12
87.975 289.1 4.5200E-3 4.260E-3 5.75
87.475 288.0 4.4245E-3 4.152E-3 6.16
87.175 287.6 4.3927E-3 4.083E-3 7.05
86.775 286.4 4.2972E-3 3.990E-3 7.15
86.375 285.3 4.2017E-3 3.896E-3 7.28
85.975 284.0 4.1062E-3 3.806E-3 7.31
85.575 283.8 4.0425E-3 3.718E-3 8.03
85.075 282.1 3.9789E-3 3.612E-3 9.22
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Table 5.9

Validation of the Schwartz-Hon Algorithm
May 2, 1990

Sky: Clear 24 Hour Avere Windspeed: 1.63 10/s Sea Surface Temperature: 284.7K Aq: 3.6064E-1

Sky Radiance Sky Radiance Total
View Incidence Reflection Emissivity At Reflection At Reflection Radiance

Angle Angle Angle OR Sea Surface ess Angle (AGA) Angle (PC-TRAN) Sea Surface
Ov of (Schwartz-Ron) (Schwartz-Hon) (LsKy) (LsKy) (LssE)

90.025 89.925 86.072 .183 4.1380E-3 3.827F-3 4.1671E-3
90.075 89.925 86.046 .187 4.1380E-3 3.821E,-3 4.1671-3
90.275 89.275 85.715 .232 4.0744E-3 3.T48E-3 4.1260E-3
90.475 89.525 85.683 .215 4.0744E-3 3.741E-3 4.1223E-3
90.675 89.325 75.651 .229 4.0T44E-3 3.733E-3 4.1254E-3
90.875 89.125 85.639 .243 4.0425E-3 3.731E-3 4.1043E-3
91.075 88.925 85.537 .257 4.0425E-3 3.709E,-3 4.1079E-3
91.275 88.725 85.435 .271 4.0425E-3 3.687E-3 4.1115E-3
91.475 88.525 85.333 .285 4.0107E-3 3.666E-3 4.0923E,-3
91.675 88.325 85.232 .299 4.010TF,-3 3.645-3 4.0963-3

Sea Surface Blackbody Sea Surface Sea Surface
Radiance Temp of Radiance Radiance Temp Temp
At SST Sea Surface At Ov (AGA) At Ov (PC-TR.AN) Conversion Conversion
(LssT) (L&R) (LSSM) (Lssc) % Error (TSSM) OK (Tssc) "K

4.2972E-3 285.08 4.3608E-3 3.9130-3 10.26 286.10 278.45
4.2972E-3 285.09 4.2971 E-3 3.9100E-3 9.00 285.05 278.40
4.2972E-3 281.75 4.2335E-3 3.8754E-3 8.46 283.99 277.78
4.2972-3 281.75 4.2016E-3 3.8605,-3 8.12 283.45 277.51
4.2972E-3 281.75 4.1380E-3 3.8622E-3 6.67 282.37 277.54
4.2972F-,3 281.33 4.1698E-3 3.8685E-3 7.23 282.91 277.66
4.2972E-3 281.33 4.1480E-3 3.8601E-3 6.72 282.37 277.51
4.2972E-3 281.33 4.1380F-3 3.8370E-3 7.27 282.37 277.09
4.2972-3 280.91 4.1698E-3 3.8458E-3 7.77, 282.91 277.25
4.2972E-3 280.91 4.1698E-3 3.8400E-3 7.91 282.91 277.14
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Table 5.10

Validation of the Shapiro Algorithm
May 2, 1990

Sky: Clear 24 Hour Average WindspeedL 1.63 m/s Sea Surface Temperature: 284.70K Aq: 3.6064E-1

Sky Radiance Sky Radiance Total
View Incidence Reflection Enissivity At Reflection At Reflection Radiance
Angle Angle Angle 9

R Sea Surface ess Angle (AGA) Angle (PC-TRAN) Sea Surface
9v of (Shapiro) (Shapiro) (LSKy) (Lsxy) (LssE)

90.025 89.975 81.832 .390 3.5332E-3 366E-3 3.8311E-3
90.075 89.925 81.794 .393 3.5332E-3 3.061E-3 3.8334E-3
90.275 89.275 81.291 .433 3.4696E-3 2.994E-3 3,8279E-3
90.475 89.525 81.484 .418 3.4696E-3 3.019E-3 3.8155E-3
90.675 89.325 81.329 .430 3.4696E-3 29E-3 3.8254E-3
90.875 89.125 81.175 .443 3.4377E-3 2.98E-3 3.8184E-3
91.075 89.925 81.015 .454 3.4377E-3 2.960E-3 3.8279E-3
91.275 88.725 80.760 .466 3.4059E-3 2.928E-3 3.8212E-3
91.475 88.525 80.504 .477 3.3741E-3 2.898E-3 3.8144E-3
91.675 88.325 80.248 .488 3.3423E-3 2.868E-3 3.8082E,-3

Sea Surface Blackbody Sea Surface Sea Surface
Radiance Temp of Radiance Radiance Temp Temp
At SST Sea Surface At 9v (AGA) At Ov (PC-TRAN) Conversion Conversion
(LSST) (LOB) (LSSM) (Lssc) % Error (Ts$M) °K (Tssc) "K

4.2972E-3 278.54 4.3608E-3 3.5461F,3 18.68 286.10 271.68
4.2972E-3 278.57 4.2971E-3 3.5468E-3 17.46 285.05 271.69
4.2972E-3 278.51 4.2335E-.3 3.5582E-3 15.95 285.99 271.92
4.2972E-3 278.34 4.2016E-3 3.5532E.3 15.43 283.45 271.82
4.2972F-3 278.47 4.1380E-3 3.5572E-3 14.04 282.37 271.89
4.2972-3 278.38 4.1698E-3 3.5635E-3 14.54 282.91 272.02
4.2972E-3 278.51 4.1380E-3 3.5496E-3 14.22 282.38 271.75
4.2972E-3 278.42 4.1380E-3 3-S60E-3 13.82 282.38 272.07
4.2972E-3 278.33 4.1698E-3 3.5654E-3 14.49 282.91 272.05
4.2972E-3 278.25 4.1698E-3 3.5654E-3 14.49 282.91 272.05
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Table 5.11

Validation of the Schwartz-Hon Model (1987-1990)

Sea Surface
Sky Wind Speed Temperature Mean % Error

Date Conditions (rn/a) (degrees C) (LSSC/Lssm)

4 Nov 87 Overcast 2.057 14.1 13.49

14 Jul 88 Clear sky 3.110 12.8 4.65

15 Jul 88 Clear sky 4.510 11.7 3.24

25 Jul 88 Overcast 4.900 15.4 4.785

2 May 90 Clear sky 1.630 11.7 7.94
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Table 5.12

Synopsis of Schwartz-Hon Validation Experiments at Low Grazing
Angles

Performed from 1987 to 1990

14 July 1988 15 July 1988
Clear Sky Clear Sky

Wind Speed of 3.1 rn/s Wind Speed of 4.0 m/s
Mean Error 2.374% Mean Error 2.49%

Lssc/LssM Lssc/LssM
View Angle Emissivity % Error View Angle Emissivity % Error

90.19 .323 2.1 90.24 .391 5.560
90.41 .335 1.750 90.46 .401 3.858
90.63 .346 1.898 90.68 .411 2.992
90.85 .358 3.427 90.90 .421 3.393
91.07 .370 1.513 91.12 .431 0.633
91.29 .382 1.465 91.34 .440 1.676
91.51 .393 1.489 91.56 .450 1.206
91.73 .405 3.451 92.00 .460 1.284
91.95 .417 3.280 92.22 .470 1.815
92.17 .429 3.353

2 May 1990 4 Nov 1987
Clear Sky Overcast Sky

Wind Speed of 1.63 m/s Wind Speed of 2.057 m/s
Mean Error 7.94% Mean Error 13.49%

Lssc/Lssm Lssc/LssM
View Angle Emissivity % Error View Angle Emissivity % Error

90.025 .183 10.26 90.109 .215 20.49
90.075 .187 9.00 90.328 .229 15.15
90.275 .232 8.46 90.547 .244 12.15
90.475 .215 8.12 90.766 .259 13.43
90.675 .229 6.67 90.984 .273 13.10
90.875 .243 7.23 91.203 .288 12.33
91.075 .257 6.72 91.422 .302 11.64
91.275 .271 7.27 91.641 .317 9.66
91.475 .285 7.77
91.675 .299 7.91

25 July 1988
Overcast

Wind Speed of 4.9 m/s
Mean Error 4.79%

Lssc/LssM
View Angle Emigsivity % Error

90.29 .443 7.137
90.51 .452 6.001
90.73 .460 5.762
90.95 .469 5.211
91.17 .477 4.406
91.39 .485 3.676
91.61 .494 3.112
91.83 .502 2.975
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APPENDIX C

A. ATTEMPTED COMPARISON OF OPERATIONAL
FLIR RANGE WITH TDA PREDICTIONS

The original area of this thesis research effort was to be the experimental val-

idation of Forward Looking Infrared Radar (FLIR) tactical decision aids for use by

VP patrol aircraft. This was to be a continuation of work being done by the Naval

Academic Center for Infrared Technology (NACIT) group at the Naval Postgradu-

ate School in conjunction with the Naval Oceanographic and Atmospheric Research

Laboratory. The hardware used to carry out this experiment consisted of the re-

cently calibrated AGEMA 780 Thermovision Camera, the research vessel R/V Point

Sur, and P3-C aircraft from NAS Moffett Field, California.

On May 2, 1990, the R/V Point Sur, based out of the Moss Landing Mariie

Laboratory, was positioned approximately .5 miles from the shore of the Naval

Postgraduate School Oceanographic Beach Laboratory. The ship contained a full

suite of meteorological instruments and radiosondes and was specially rigged with 16

calibrated thermistor temperature sensors. These sensors were attached to the hull

of the ship with a clear epoxy cement and covered with a latex compound to avoid

direct solar heating. They recorded the hull, blockhouse and stack temperatures

every 20 seconds for the duration of the experiment.

The AGEMA Thermovision Camera was set up on a ridge outside the beach

laboratory with a clear view of the entire Monterey Bay. Approximately 100 images

of the ship, sky and ocean were taken at various viewing angles and wind speeds.

At the same time the ship was in the bay and the AGEMA pictures were being

taken, P3-C aircraft from Moffett Field, California, equipped with the AN/AAS-36

Infra-Red Detecting Set (IRDS), were to make repeated passes at pre-planned al-

titudes over the R/V Point Sur. Actual FLR ranges for detection, classification
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and identification were to be recorded by various fleet operators under actual mar-

itime patrol conditions. Both day and night sorties would be flown and passes on

all aspects of the ship recorded. All Forward Looking Infrared Displays would be

recorded on standard video tap with an accompanying voicetrack. The targets were

to be detected in the wide field of view and classified and identified in the narrow

field of view. All meteorological conditions would be recorded in the aircraft and

later compared to actual shipboard recordings and radiosonde data.

B. PROBLEMS ENCOUNTERED

Problems that were encountered during this phase of the experiment included:

1. On the day of the experiment, the entire Monterey Bay was covered in thick
fog from the surface to 600 feet. The P3-C aircraft was unable to visually
sight the R/V Point Sur or take any FLIR readings.

2. The thermistor readings that were being recorded by computer onboard the
ship were accidentally overwritten and all data for that portion of the cruise
was lost.

3. Of the four P3-C flights scheduled, only one was able to record any useful
data. Two flights aborted for weather and two aborted for equipment failure.

C. RECOMMENDATIONS FOR FUTURE
EXPERIMENTS

1. The R/V Point Sur cruises are in May and November with May being the
worst month for fog and low clouds in the Monterey Peninsula. More than
one opportunity to get the ship, aircraft, and camera in the same place at
the same time is needed. The R/V Point Sur should be able to stop in the
Monterey Bay on the return as well as outward leg of the cruise.

2. Dedicated P3-C flights from Moffett Field should be made to collect data on
FLIR ranges for detection, classification, and recognition. Flight crews were
not well briefed or prepared for this mission because it was added on to the
end of 10-12 hour anti-submarine missions or long reconnaissance flights.

3. A computer program for the thermistor data should be written that cannot
be overwritten by unfamiliar operators.
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4. The prospective importance of such operational data for validation and im-
provement of Tactical Decision Aid FLIR performance prediction justifies more
dedicated effort for ensuring data.

D. POINTS OF CONTACT FOR FOLLOW-ON
EXPERIMENTS

P3-C aircraft COMPATWING 10
NAS Moffett Field, California 94035
(415-966-4942)
(Attention: Special Projects Officer)

AGEMA Camera AGEMA Infrared
108 Arena Street
El Segundo, California 90245
(213-322-6257)
(Attention: Mr. Al Fudali)

R/V Point Sur Marine Superintendents Office
Moss Landing Marine Lab
893 Blanco Circle
Moss Landing, California
(408-633-3057)

Metro Data Monterey Bay Aquarium (24 hour)
(408-647-8382) 1200 Baud Modem
NOCD Moffett Field, California
(415-966-5197)
Naval Postgraduate School
Meteorology Department
(Cruise data maintained on the mainframe computer)
(Attention: Mr. Paul Jesson)
(408-646-3269)
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APPENDIX D

FORTRAN PROGRAM

A. USING THE AGACAT PROGRAM

The following computer program AGACAT was written to allow a user access

to thermal imaging data taken with the AGEMA Corporation 780 Thermovision

camera. The use of this program requires an IBM or compatible computer with

either au EGA or VGA monitor and a Microsoft mouse.

The Naval Academic Center for Infrared Technology (NACIT), located at

the Naval Postgraduate School in Monterey, California maintains a current library

of AGEMA Thermovision files. This data includes ship, sea/sky interface, and

blackbody images. A copy of this program and image listings can be obtained

by writing or calling Professor E. Milne or Professor A. W. Cooper at the Naval

Postgraduate School, Monterey, California, 93940-5100, (480-646-2452) (408-646-

2886).

The operatioi, of the AGACAT program requires a font file HELVB.FON.

Any mouse and mouse driver must be loaded before loading AGACAT.

After installing the AGACAT program on the hard disc, execute the program.

The program will query "Enter filename and path of data file." The filenames vary

but must end with the extension ".img." The program will then give the user the

choice of printing out the constants used in the thermal image calculation. The

choices are "1" for printing the constants and "0" for not printing the constants.

The next question asked concerns the list of variables that may be changed by

the user. These variables include LEVEL OFFSET, EMISSIVITY, AREA EMIS-

SIVITY, OBJECT DISTANCE, ESTIMATED TRANSMISSION, ATMOSPHERIC

TRANSMISSION, and AMBIENT TEMPERATURE. The user must type "&LISTI"

85



followed by the equal sign (=), followed by the desired value. After the last desired

value, type / to end the entries.

The program will then accept the new values, reprint them and compute the

maximum and minimum temperatures contained in the thermal image. The user

is given the choice of accepting the variables and viewing the thermal image by

selecting <ENTER>. Other choices include entering a new temperature threshold

level, typing 1000 to stop, 2000 to read in a new file, or 3000 to change variables.

The threshold level changes the lowest false color to the desired temperature value.

The subsequent question asks the user for the temperature difference between false

colors. This value breaks the ten colors of the thermal image into the desired levels.

Again, the thermal image can now be viewed by selecting <ENTER>.

When viewing the actual thermal image, information included on the screen

includes image number, date/time group, field of view, aperture, wavelength, wave-

band, and filters. The bottom left hand corner of the screen shows the spot temper-

ature of the mouse cursor labeled "T." An average temperature of a selected area

can be bounded using an included "box" function. By momentarily (on the order

of one second) holding down the left hand button and moving the mouse, the upper

left corner of the box can be positioned anywhere above the lower right corner of

the image. Similarly, holding the right hand mouse button moves the bottom right

corner of the box. The value "TA" is the computed average temperature of the area

contained inside the box. The numerical values below the "T" and "TA" show the

corresponding pixel values of the mouse cursor and the corners of the box.
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C PROGRAM AGACATFD AUG 31 1990
C
C (CONVERT AGEMA CORPORATION CATS PROGRAM IN MICROSOFT FORTRAN)
C
C WRITTEN BY LT GREGORY H. LAWLER (USN) AND PROFESSOR E. MILNE
C NAVAL POSTGRADUATE SCHOOL PHYSICS DEPARTMENT
C MONTEREY. CALIFORNIA, 93943-5000
C
C This program will read in files generated by the Agema Corporation
C CATS program and produce a false color display of the image generated
C by the aga thermovision. One can then find the temperature at any
C given point in the display and also the average temperature inside an
C rectangle of any size. The constants in the files may be printed out.
C

Include 'D:\INCLUDE\fgraph.fi' I graphics interface file
include 'D:\INCLUDE\fgraph.fd' I defines and names constants

C
C VARIABLE DECL.ARATIONS
C

character*20 filn$.head$*846,picture$*19600,fil$*16,text$*l
character*20 fonl$/'hclv'hi~w8l /,FOV$*5,APER$*4,FILTER$*4
character*6 pgmver$, imagEdr$*2 ,notused$*l ,missing$*36,comnient$*401

*,imageid$*13,UNUSED$*l,TITLE$*46,SCANNERS*13,NU$*l,NU2$*l
*,NU3$*64,NU4$*64,ANS$*6,LINE$*7,LINE8$*8,BLK$*8/'
INTECER*1 IPIX(19600)
INTEGER*2 IMACE(140,140) ,L,min,max,maxx,maxy,ml,m2,m3,m4,JP,IP,LC
INTEGER*2 I ,J,11,Jl,12,J2 ,Ll,L2,L3,L4,L6,L7 ,L8,L9,K,JPIX(140,140)
integer*2 imgver,jorigin,kprep,isigamp,liJ,IDATE(3) ,ITIME(4),Kl
INTEGER*2 IC(1O) /1,9,2,10,5,4,13,6,14, 15/,13,J3,II ,LO,KK,LL
INTECER*2 DUMMY
INTECER*4 IER, ISUM,JSUM
RECORD /VIDEOCONFIG/SCREEN
RECORD /XYCOORD/S
real*8factor,R,B,F,DCAL,ALPHIA,BFTA,DLEVEL.,EMISS,AEMISS,OD,CT,

*ET,AT.AMT,DIFFP,DIFFQ,LEVEL,RANCE,IU(IO),pix,pl,p2,iamb,iatm,
*IOMIN,T1,IOMAX,T2,TLD,TTIL,IOl ,IO,PIX1,P3,PIX2,T
LOGICAL*2 MANIMAG,SNAPSiIOT,DIFIMAG,UNDERF,OVERF,FLC,CLRFLC

C
C*******DATA IS READ INTO HEAD$ WHICH IS EAUIVALENCED TO EACH OF THE*A~**
C INDIVIDUAL VARIABL.ES IN THE INPUT
C
C******THE PICTURE DATA IS READ INTO PICTURE$ WHICH IS EQUAVALENCED****
C TO IPIX.

EQUIVALENCE (head$(1:2),imgver),(HIEAD$(3:8),PGMVER$),(HIEAD$(9:10),
*JORICIN) ,(HEAD$(ll :23), IMAGEID$) ,(IIEAD$(24 :24) ,NOTUSE)$) ,(HEAD$(25
*:26),IM4AGEDR$),(HEAD$(27:62),MISSIN$),(IEAD$(63.463),COMET$),(i
*EAD$(464 :465) ,KPREP) ,(HEAD$(466 :473) FACTOR) (HiEADS(4 74 :475) ISIGA
*MP) ,(HIEADS (476:477) ,MANIMAG) ,(IIEAD$(478:479) ,SNAPSHIOT) ,(IIEAD$(480:
*481),DIFIMAG),(llEAD$(482:482),UNUSED$),(IiEAD)$(483:488),IDATE),(IIEA
*D$(489 :496) ,ITIME) ,(IIEAD$ (497: 542) ,TITLE$) ,(HEAD$( 543: 555) ,SCANNER

*$),(IIEAD$ (556: 556) NU$), (HEAD$( 557: 561),FOV$),(HiEAD ( 562 :565) APER
*)(IEAD$(566:569) ,FILTER$) ,(HEAD$(570: 570) ,NU2$)

*,(HEAD$(571:578),R),(HEAD$(579:586),B),(HiEAD$(587:594),F)
EQUIVALENCE (HEAD$(595:602),DCAL),(HEAD$(603:610),ALPIIA),(IIEAD$(61

*1:618),BETA),(IIEAD$(619:626),D.E.'EL),(IIEAD$(627:634),EMISS),(IIEAD$
*(635:642) ,AEMISS) , (IEAD$(643:650) ,OD), (IIEAD$(651 :658) ,CT) , (IEADS(6
*59:666),ET),(HEAD(667:674)AT),(IIEAD$(675682)MT),(IiEAD$(683:69
*0),DIFFP),(HEAD$(691:698),DIFFQ),(HEAD$(699:762),NU3$),(IIEAD$(763:
*770),LEVEL) ,(HEAD$(771: 778),RANGE) (HEAD$(779: 780) ,UNDERF) ,(HEAD$(
*781 :782) ,OVERF), (HEAD$( 783 :846) ,NU4$)
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EQUIVALENCE (PICTURE$,IPIX)
namelist /listl/DLEVEL,CT,EMISS,OD,AT.AMT,AEMISS

C
C
C**************CHECK FOR THE EXISTANCE OF MOUSE AND MOUSE DRIVER******
C

.1-0
call mousel(mla2m3,n4)
IF(Ml.EQ.O)STOP 'ERROR - YOU MUST LOAD THE HOUSE DRIVER FIRST

C
C***************CHECK FOR AND LOAD THE FONT FL***********
C

if(REGISTERFONTS('D:\LIB\HELVB.FON') .LT.O)THEN
IF(REGISTERFONTS('HELVB.FON') .LT.0)THEN
WRITE(*,*)' ERROR CANNOT FIND FONT FILE'
STOP' THE FONT FILE ''HELVB.FON'' MUST BE ON THE DEFAULT DISK'

END IF
END IF
IF(SETFONT(FONI$) .NE.O)THEN
WRITE(*,*)' ERROR cannot set font'
STOP

END IF
C
C***************************OPEN THE DATA FL*************
C

CALL GETARG(INT2(l),filn$.lh)
if(lh. le. 1)tben
write(*,*) 'enter filname and path of data file'
read(*, '(a)' )filn$

end if
1 close (2)

open(2,file-filn$,fori-'BINARY' ,IOSTAT-IER,ERR-9g0,MODE-'READ',
*STATUS-.'OWD')

C
C*****************************OPEN THE PRINTER FI LE*********************
C

OPEN(3,FILE-'LPTL')
C
C
C***************READ IN THE DATA AND THE PICTURE ELEMENTS***************
C

READ(2 ,END-991,*ERR-992 ,IOSTAT.-IER)IIEAD$ ,PICTURE$
C
C*******************PRINT OUT THE CONSTANTS TO THE PRINTER*************
C

2 write(*,*)' ENTER 1 FOR PRINTING OUT THE CONSTANTS'
write(*,*)' ENTER 0 FOR NOT PRINTING OUT THlE CONSTANTS'
read(*,*) 11
WRITE(*,*)' DO YOU WISH TO CHANGE ANY OF THE VARIABLES? (Y/N)'
READ(*, '(Al)' )NU$
IF(NU$.NE.'Y'.AND.NU$.NE.'y')GO TO 4

3 WRITE(*,'("' THE FOLLOWING IS A LIST OF VARIABLES THAT MAY BE CHAN
+GED.''/'' TYPE &LIST1 <ENTER> TO IDENTIFY THE LIST OF VARIABLES.''

+1'TYPE THE VARIABLE NAME FOLLOWED BY - THEN TYPE THE NEW VALUE.'
'/'AFTER THE LAST ENTRY TYPE / <ENTER> TO END THE ENTRIES."')')

WRITE(*,'('" DLEVEL (THE LEVEL OFFSET) - '',lPD10.3)')DLEVEL
WRITE(*,'('' EMISS (THE EMISSIVITY OF TARGET) - '',lPDlO.3)')EMISS
WRITE(*,'('" AEMISS (AREA EMISSIVITY) - '',lPD10.3)')AEMISS
WRITE(*,'('" OD (OBJECT DISTANCE) - ''.1PDIO.3)')OD
WRITE(*,'('' CT (ESTIMATED TRANSMISSION) - '',lPD1O.3)')CT
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1IRITE(*,'('' AT (ATMOSPHERIC TEMPERATURE) - ',1PD1O.3)')AT
WRITE(*,'(" ATM (AMBIENT TEMPERATURE) - ',lPDIO.3)')AMT
READ(*, LISTi)
WRITE(*,( DLEVEL (THE LEVEL OFFSET) - '',lPD1O.3)')DLEVEL
WRITE(*,C' EKISS (THE EHISSIVITY OF TARGET) - ',lPDIO.3)')EMISS
WRITE(*,'(" AEMISS (AREA EMISSIVITY) - ",1PD1O.3)')AEMISS
WRITE(*'C' OD (OBJECT DISTANCE) - ',1PD1O.3)')OD
WRITE(*.'C' CT (ESTIMATED TRANSMISSION) - ',1PD1O.3)')CT
WRITE(*,'(" AT (ATMOSPHERIC TEMPERATURE) - ',lPD1O.3)')AT
WRITE(*'C' ATM (AMBIENT TEMPERATURE) - '',1PDIO.3)')AMT

4 IF(II.EQ.1) THEN
WRITE(3.'(6X,-- IMAGE VERSION - ",12)') IMCVER
WRITE(3,'(6X' PROGRAM VERSION$ - ",A6)1) PGMVER$
WRITE(3.'(6X.'' ORIGIN - ''.12)') JORIGIN
WRITE(3,'(6X,'' IMAGE IDENTITY - ',A13)') IMACEID$
WRITE(3,'(6X,'' IMAGE DRIVE$ - '',A2)') IMAGEDR$
WRITE(3,'(6X,' MISSING BYTES -'',A36)') MISSING$
WRITE(3,'(6X.' COM4MENTS - ",A401)1) COMMENT$
IRITE(3,'(6X.'' PREPROCESSOR -''.12)') KPREP
WRITE(3,'(6X,'- MAGNIFICATION FACTOR -' .Dll.4)') FACTOR
WRITE(3,'(6X,'' SIGNAL AMPLIFICATION -'',12)') ISIGAHP
WRITE(3,-(6X,-' MANIPULATED IMAGE -'',L7)') MANIMAG
WRITE(3,'(6X," SNAPSHOT -'',L7)') SNAPSHOT
WRITE(3,'(6X,'' DIFFERENCE IMAGE -'',L7)') DIFIMAG

WRITE(3,'(6X,'' DATE -'',313)') IDATE
WRITE(3,'(6X,'' TIME -'',413)') ITIME
lWRITE(3,'(6X,'' TITLE -'',A46)') TITLE$
WRITE(3,'(6X,-' SCANNER -'',Al3)') SCANNER$
WRITE(3,'(6X,' FIELD OF VIEW -'',A5)') FOV$
WRITE(3,'(6X,'' APERTURE -'',A4)') APER$
WRITE(3,'(6X,'' FILTER -'',A4)') FILTER$
WRITE(3,'(6X,'- R -',Dll.4)') R
WRITE(3,'(6X,'' B -'',D1l.4)') B
WRITE(3,'(6X,'' F -',D11.4)') F
WRITE(3,'(6X,'' DCAL -',DII.4)') DOAL
WRITE(3,'(6X,'' ALPHA -'',Dll.4)') ALPHA
WRITE(3,-(6X,'- BETA -'',Dl1.4)') BETA
WRITE(3,'(6X,'' DLEVEL -'',Dll.4)') OLEVEL
WRITE(3,'(6X,-- EMISSIVITY -'',Dll.4)') EMISS
WRITE(3,'(6X,'' AREA EMISSIVITY -'',D1l.4)') AEMISS
WRITE(3,'(6X.'' OBJECT DISTANCE -'',Dl.4)-) OD
WRITE(3,-(6X,'- COMPUTED TRANSMISSION -'',Dll.4)') CT
WRITE(3,'(6X,'' ESTIM4ATED TRANSMISSION -'',DII.4)') ET
WRITE(3,-(6X,-- ATMOSP'ERE TEMP -'',D11.4)') AT
WRITE(3.'(6X," AMBIl. TEMP -'',Dll.4)') AMT
IRITE(3,'(6X,'' DIFFP -'',Dll.4)-) DIFFP
WRITE(3,-(6X,-- DIFF( --',D]1.4)-) DIFFQ
WRITE(3,*(6X,'' LEV~c. -'',DlI.4)') LEVEL
WRlTE(3,2(6X.'' RANGE -'-,DI1.4)') RANGE
WRITE(3.'(6X,'' UNDERFLOW -'',L7)') UNDERF
WRITE(3,'(6X,-- OVERFLOW -'',L7)') OVERF

END IF
C
C******************CONVERT FROM BYTE FORMAT TO INTEGER FORMAT**********
C

MI N-5 12
ifAX-O
DO 1-1.19600
J-2*((1-1)/140+1)
IF(J.GT. 140)J-J-141

89



K-MOD((I-1) ,140)+l
L-IPIX(I)
IF(L.LT.O)L-L+256
IF(L. LT.MIN)MIN-L
IF(L.GT.MAX)MAX-L
IMAGE(J ,K)-L

END DO
C
C************FIND MAXIMUM AND MINIMUM TEMPERATURES******************
C

pix-range*(float(min) -128. )/254 .O+level+dlevel
PIXi-PIX
Pl-EMISS*CT
P2-(l-EMISS)/EMISS
IAMB-R/(EXP(B/AMT) -F)
P3-i. ODO-CT
IATH-R/(exp(B/AT) -F)
IOMIN-PIX/P - P2*IANB- P3/P1*IATM
tl-b/alog(abs((r/IOMIN+f))) -273.15
pix-range*(float(aax)-128. )/254.O+level+dleveI
PIX2-PIX
IOIIAX-pix/Pi .P2*IAMB-P3/P1*IATI
t2-b/alog(abs((r/IOMAXf)))-273.15
IF(II .EQ. 1)THEN
WRITE(3,'(A)')'
WRITE(3,-(6X.' P1 - -,lPEI1.3)')P1
WRITE(3,'(6X," P2 - '',lPEIL.3)-9P2
WRITE(3,1(6X,' P3 - '',lPE11.3)1)P3
WRITE(3,1(6X,' MT - ',1PE1l.3)')AMT
WRITE(3,j(6X,' AT - ''.1PE11.3)')AT
WRITE(3,'(6X," IAMB - --,IPE11.3)-)IAMB
WRITE(3,1(6X,' IATH - '',lPE1I.3)')IATM
WRITE(3,j(6X,'' MINIMUM PIXEL VALUE - -'.I4)')MIN
WRITE(3,1(6X.'' MAXIMUM PIXEL VALUE - UeI14))AX)

WRITE(3,.(6X,'' IPIXMIN - '',lPE11.3)')PIX1
WRITE(3,'(6X," IPIXHAX - '',IPE11.3)')PIX2
WRITE(3,'(6Xj' IOMIN - '',lPE11.3)')IOMIN
WRITE(3,'(6X,'' IOMAX - '',lPE11.3)')IOMAX
WJRITE(3,'(6X,'' MINIMUM TEMPERATURE - '',F9.2)')TI
WRITE(3,'(6Xj' MAXIMUM TEMPERATURE - #$lF9.2)')T2

WRITE(3,.(A)')' '//CHAR(12)//'
CLOSE (3)

ENDI F
I F(OVERF)THEN
WRITE(*,'('" MAX TEMP - '',F9.2,11 OVERFLOW OCCURED'')')T2

ELSE
WRITE(*,'(" MAXIMUM TEMPERATURE - --,F9.2)l)T2

ENDIF
IF(UNDERF)THEN
WRITE(*,'("' MIN TEMP - '",F9.2,1' UNDERFLOW OCCURED'')')Tl

ELSE
WRITE(*,'("' MINIMUM TEMPERATURE - '',F9.2)')TI

END IF
C
C****************INPUT TEMPERATURE THRESHOLD AND DIFFERENCE************
C

31 WRITE(*.*)' ENTER TEMPERATURE THRESHOLD LEVEL (DEG. C)'
write(*,*)' ENTER 1000 TO STOP'
write(*,*)' ENTER 2000 TO READ IN A NEW FILE'
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WRITE(*,*)' ENTER 3000 TO CHANGE VARIABLES'
READ(*, '(a)' )ans$
iE(ans$.eq.' ')then
tLD-(T2-Tl)/11.

else
read(ans$, (f6.0)')ttl
IF(TTL.CT.2999.)GO TO 3
IF(TTL.GT.2999.)GO TO 2
IF(TTL.GE.1999.0)GO TO 993
IF(TTL.GT.999.0) STOP
WRITE(*,(' ENTER TEMPERATURE DIFFERENCE (DEG. C)'')')
READ(*,*)TLD

end if
fig-. false.

C
C****************GRAPHICS SECTION**************************************
C

CALL GRAPHICSMODE(SCREEN ,CLRFLG ,MAXX.MAXY)
DUMMY-S ETCOLOR( int2 (15))
LO-150
Ll-50
L2- 576
1.3-3 35

C
C***********DRAW BORDER AROUND PICTURE AREA***************************
C

DUMMY-RECTANGLE($GBORDER ,LO, Li,L2 ,L3)

DO 1-0,140,10
DO J-1,4

DUMMY- SETPIXEL(3*I+LO,Ll-J)
DUMMY- SETPIXEL( 3*I+LO ,L3+J)

END DO
END DO
DO 1-1,2
DO J-0,140,10

DUMMY- SETPIXEL(LO-I ,2*J+L.1)
DUMMY- SETPIXEL(L2+I .2*J. Li)

END DO
END DO

C
C***********CALCULATE TEMPERATURES REPRESENTED BY DIFFERENT COLORS****
C

Ll-228
do i - 1,10

L4-5
LI-LI- 16
CALL MOVETO(L4,LL,S)
T-TTL+ FLOAT (I -1) *TLD
IF(I.EQ.1)THEN

1JRITE(LINE$ ,-('1<' ,F6 .2)' )T
ELSEIF(I .EQ. 10)THEN

WRITE(LINE$, '(''>'' ,F6. 2)' )T
ELSE
WRITE(LINE$,1(1' ' , F6 .2)')T

ENDIF
DUMMY - SETCOLOR(INT2(15))
CALL OUTOT EXT (LINE$)
1.6-74
L7-Ll - 6
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1.8-1,6+40
L9-LI+4
DUMMY - SETCOLOR(IC(I))
DUMMY-RECTANGLE ( GFI LLI NTERIOR, L6 ,L7, L8 ,L9)
IU(I)-R/(EXP(B/(T+273. 15))-F)

END DO
C
C**********PRINT OUT HEADI NG INFORMATION********************************
C

call settextposition(int2(l) ,int2(lO) ,s)
call outtext(' IMAGE NUMBER - '//IMAGEID$)
call settextposition(int2(2),int2(1O),s)
CALL OUTTEXT(I FOV - *//FOV$//# APERTURE - '//APER$)
CALL SETTEXTPOSIT1ON(INT2(3) .INT2(1O) .5)
CALL OUTTEXT(' WAVELENGTH - '//SCANNER$// FILTER - '//FILTER$)
IF(OVERF)THEN
CALL SETTEXTPOSITION(INT2(22),INT2(l),S)
CALL OUTTEXT( 'OVERFLOW')

ENDIF
IF(UNDERF)THEN
CALL SETTEXTPOSITION(INT2(23) ,INT2(l) ,S)
CALL OUTTEXT('UNDERFLOWI)

END IF
C
C********PLOT OUT PICTURE IN FALSE COLORS*******************************
C

DO 1-1,140
DO J-1,140

101-range*(image(i,j)-l28.)/254.O+level+dleve1
PIX-(101/Pl -P2*IAMB. P3/PL*IATM)
IF(PIX.LT. IU(1))TIIEN
LC-O

ELSE IF(PIX.LT.IU(2))THEN
LC-1

ELSE IF(PIX.LT.IU(3)) THEN
LC-9

ELSE IF(PIX. LT. IU(4) )TIIEN
LC-2

ELSE IF(PIX.LT.IU(5)) TIIEN
LC-10

ELSE IF(PIX.LT.IU(6))TIEN
LC-5

ELSE IF(PIX.LT.IU(7)) THEN
LC-4

ELSE IF(PIX.LT.IU(8))THEN
LC-13

ELSE IF(PIX.LT.IU(9)) ThIEN
LC-6

ELSE IF(PIX.LT.IU(lO))TIIEN
LC-14

ELSE
LC-15

end if
LO0-5O+2*1
L.1-L.O+1
L2-1 50+3*J
L3-L2+2
JPIX(J, I)-LC
DUMMY-S ETCOLOR (LC)
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DO I P-LOLl
DO JP-L2,L3

DUNNY-SETPIXEL(JP, IP)
END DO

END DO
END DO

END DO
C
C
C*********FIND TEMPERTURE AT A SELECTED POINT OR AVERAGED IN A BOX****
C INITIALIZATION OF CROSS AND BOX
C
C

J2-70
12-70
FLG - .FALSE.
CALL CROSS(FLG,12,J2,13,J3.JPIX)
PIX-RANGE*(FLOAT(IMAGE(l2,J2)).128.)/254.+LEVEL + DLEVEL
10-PIX/PI -P2*IAMB- IATM*P3/Pl
T-B/ALOG(ABS(R/IO+F) )-273.15
CALL SETTEXTPOSITION(INT2(l8),INT2(l),S)
WRITE(TEXT$,'('T - '',F6.2)')T
CALL OUTT EXT (TEXT$)
J-1
I-1
L-140
K-140
FLG-. FALSE.
CALL BOX(FLG,I,J,K,L,Il,J1.Kl,Ll,JPIX)
ISUM-O
JSUM-O
DO KK-JL

DO LL - 1,K

JsUK-JsUH.-
I SUM-ISUM+It4AGE(LL. KK)

END DO
END DO
PIX-RANGE*CFLOAT(ISUM)/FLOAT(JSUM)-128. )/254.+LEVEL-fDLEVEL
10-PIX/Pl- P2*IA4B.IATM*P3/P1
T-B/ALOG(ABS(R/IO+F))-273. 15
CALL SETTEXTPOSITION(INT2(20) ,irit2(l),s)
WRITE(TEXT$,'('TA - '',F6.2)')T
CALL OUTTEXT(TEXT$)
CALL SETTEXTPOSITION(INT2(21) .int2(l),s)
WRITE(FIL$, '(414)')J,IL,K
CALL OUTTEXT(FIL$)
GO TO 61

C
C*********FIND TEMPERTURE AT A SELECTED POINT
C

60 CALL WAIT(INT2(50))
61 Ml-1l

CALL MOUSEL(Ml,M2,M3,M4)
J2-j2+m3
12-12+m4
if(12. lt.6)i2-6
if(i2.gt.134)i2-134
if(j2 . t.5)j2-5
if(j2 .gt. 136)j2-136
call settextposition(int2(19),int2(l),s)
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writ.(LINE8$, *(214)')j2 ,i2
CALL OUTTEXT(LINE8$)
CALL CROSS(FLC,I2,J2,I3,J3,JPIX)
PIX-RANGE*(FL0AT(II4AGE(I2,J2))-128. )/254.+LEVEL+DLEVEL
lO-PIX/Pi -P2*IAHB- IATM*P3/Pl
T-B/ALOG(ABS(R/IO+F)) -273.15
CALL SETTEXTPOSITION(INT2(1B) *int2(l) ,s)

CALL OUTTEXT (TEXT$)
u1-3
call nousel(ml.m2.m3,m4)
.1-99
COTO (61,70.80,90),H2+1

70 CALL WAIT(INT2(lOO))
71 Ml-11

CALL HOUSEL(Hl.142.143,144)
1-14144
J-J+143

IF(J .LT. l)J-l
IF(I .GE.K)I-K-l
IF(J .GE.L)J-L-1
CALL BOX(FLG,1.J.K.L,I1,J1,K1,LlJPIX)
ISUM-O
.JSU1-O
DO KK-J.L

DO LL - IK
J SUK-J SU1+1
ISU14-ISUMe-IJACE(LL, KK)

END DO
END DO
PIX-RANGE*(FLOAT(ISUM)/FLOAT(JSUM) -128. )/254 .+LEVEL+DLEVEL
1o-PIX/P - P2*IAMB- IATM*P3/P1
T-B/ALOG(ABS(R/IO+F)) -273.15
CALL SETTEXTPOSITION(INT2(20), int2(l) ,s)
WRITE(TEXT$,('TA- -',F6.2)')T
CALL OVTTEXT (TEXT 5)
CALL SETTEXTPOSITION(INT2(21),int2(1) ,s)
write(FIL$, '(414)' )J,I,LK
CALL OIJTTEXT( FIL$)
141-3
CALL MOUSEL(41 .12.13,144)
141-99
CO TO (71,60,80,90),M2*1

80 CALL WAIT(INT2(iOO))
81 Mi-il

CALL MOUSEL(M1,M2,43,14)
K-44

L-L+M3
IF(K.GT. 140)K-140
IF(K.LE. I)K-I--1
IF(L.GT.140)L-140
IF(L. LE.J)L-J+i
CALL BOX(FLG,1,J,K,LI1,J1,Ki,L1,JPIX)
ISUM-0

JSUM-O
DO KK-JL

DO LL-1,K
JSUJM-JSUM4 1
ISUM-ISUMi-IMAGE(LL,KK)
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END DO
END DO
PIX-RANCE*(FLOAT(ISU4)/FLOAT(JSUM) .128.0)/254 .0+LEVEL+DLEVEL
10-FIX/Fl. P2*IA4B- IATI4*P3/Pl
T-B/ALO(ABS(R/IO.F)) .273.15
CALL SETrEXTFOSITION(INT2(20) ,INT2(1) ,S)
WRITE(TEXT$,'("TA - 'IF6.2)')T
CALL OUTTEXT(TEXT$)
CALL SETTEXTPOSITION(INT2(21) ,INT2(1) ,S)
WRITE(FIL$,-(4I4)')J,.L,K
CALL OUTTEXT(FIL$)
141-3
CALL ZOUSEL(MI .12,143,14)
141-99
GO TO (81,60,70,90).M2+l

C
C
C********CALL THE END OF PLOT AND GO BACK TO TEMPERATURE ENTRY**********
C
C

90 CALL ENDPLOTIT(CLRFLG)
if(rnl.eq.0)stop 'ERROR YOU MUST LOAD THE MOUSE DRIVER FIRST'
GO TO 31

C
C
C************ERROR RECOVERY SECTION*************************************
C
C
990 write(*,*)' CANNOT FIND '//FILN$

GO TO 993
991 WRITE(*,*)' UNEXPECTED END OF FILE FOUND IN '//FILN$

GO TO 993
992 WRITE(*,*)' CANNOT OPEN '//FILN$
993 WRITE(*,*)' ENTER NEW PATH AND FILE NAME. NULL ENTRY TO STOP'

IF(FILN$.EQ.' ')STOP
CO TO 1

C
C
C
C

end
C
C***********CRAPHICS SUBROUTINE**********************************
C
C

subroutine graphicsmode(screen~clrflg,iaxx,maxy)
include 'd:\include\fgraph. fd'
record /videoconfig/ screen
integer*2 dununy~maxx,niaxy
logical*2 cirfig
cirfig - .true.
call getvideoconfig(screen)
select case(screen.adapter)

case ($cga,$ocga)
dummwy - setvideomode($nires4color)

case ($ega,$oega)
dummy - setvideomode($erescolor)

case ($vga,$ovga)
dummy - setvideomode($vresl6color)
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case ($hgc)
dummy - setvideomode($hercmono)
cirfig-. false.

case default
dummy - 0

end select
if(duzmmy.eq.O) then
write(*,*) 'ERROR -- CANNOT SET CRAPHICS MODE1tI
WRITE(*,*) 'If you have a Hercules mono card you must run the'
write(*,*) MSHERC.COM program first.'
stop

end if
call getvideoconfig(screen)
maxx - screen.numxpixels - 1
maxy - screen.numypixele - 1
return
end

C
C
C
C

subroutine endplotit(clrflg)
Include 'd:\INCLUDE\fgraph. fd'
integer*2 dummy
logical*2 clrflg
if(clrflg)then
dummy - setvideomode($textcBO)

else
dummy - setvideomode($defaultmode)

end If
return
end

C
C
C*********SUBROUTINE TO DRAW A CROSS ON THE SCREEN*********************

C

SUBROUTINE CROSS(FLG,I,J,11,JI,JPIX)
INCLUDE 'd:\include\FGRAPII. FD'
INTECER*2 1,J,1l,Jl,DU*UY,K,LO,Ll,L2,J2,12
IMTEGER*2 JPIX(140, 140)
LOGICAL*2 FLG
if(flg) then
DO K-1,20

LO-141 + 3*J1 + K
LI-51 + 2*11
J2-(LO-150)/3
DUMMY-SETCOLOR(JPIX(J2 ,II))
DUMKY-SETPIXEL(LO ,Li)
LO-151+3*J 1
Ll-41+2*I l+k
L2-LO+1
12-(11-50)/2
DUMMY-SETCOLOR(JPIX(J1 ,12))
DUtIMY-SETPIXEL(LO ,LI)

END DO
END IF
DUHIIY-SETCOLOR( INT2 (7))
DO K-1,20

LO-141+3*J+K

96



Ll-5 142*I
L2-L1+1
DUHMY-SETPIXEL( LO ,Li)
LO-151+3*j
LI-41+2*I+K
L2-LO+i
DUMKY-SETPIXEL(LO, Li)

END DO
FLG-. TRUE.
il-i

.11-i
RETURN
END

C
C
C*****SUBROUTINE TO DRAW A BOX OR RECTANGLE ON THE SCREEN***********
C
C

SUBROUTINE BOX(FLG,I.J,K,L.Ii,1,lKl,L1,JPIX)
INCLUDE *D:\INCLUDE\FGRAPH. FD'
INTEGER*2 1,3 ,K,L,M,N,Ii,Jl,Kl,Li,LLO,LLi,LL2,J2,I2,DUMMY
INTEGER*2 JPIX(140, 140)
LOGICAL*2 FLO
IF(FLG)TIIEN
DO H-3*Ji-2,3*Ll-i

LLO-153+H
LLI-5i+2*I 1
J2-(M+3)/3
LL2-LL1 +1
DUMNY-SETCOLOR(JPIX(J2 .11))
DUMMY-S ETPIXEL(LLO ,LLI)
LL1-51+2*Kl
LL2-LL1+ 1
DUMMY-SETCOLOR(JPIX(J2 ,K1))
DUMM4Y-SETPIXEL(LLO, LLL)

END DO
DO N-2*Il,2*K1-3

LLO-151+3*J I
LL1-LLO+l
12- (N+ 3)/2
LL2-5 3+N
DUMM4Y-SETCOLOR(JPIX(JI .12))
DUM14Y-SETPIXEL( LLO, LL2)

LLO-151+3*Ll
LLi-LLO+l
DUMM4Y-SETCOLOR(JPIX(LI .12))
DUMMY-S ETPIXEL(LLO ,LL2)

END DO
END IF
DUMMY-SETCOLOR(INT2(7))
DO M-3*J-2,3*L-1
LLO-1534M
LLI -51+2*1
LL2-LL1 +1
DUMMY-S ETPIXEL(LLO ,LLI)

LL1-5 l+2*K
LL2-LL1+l
DUMMY-SETPIXEL( LLO *LL1)

END DO
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DO N-2*I,2*K-3

LLO..15 1-3*
LL1-LLO+l
LL2-53+N
DUHY-SETPIXEL(LLO ,LL2)
LLO-151+3*L
LL1-LLO+l
DUMMY-SETPIXEL(LLO ,LL2)

END DO
FLG-.TRUE.
Il-I
J I-J
Kl-K
Ll-L
RETURN
END

C

C SUBROUTINE TO WAIT OR KILL TIME
C

SUBROUTINE WAIT(K)
INTEGER*2 I,J,K
REAL*4 X
DO 1-1,K

DO J-1,100
X-SQRT(FLOAT(I)**2+FLOAT(J )**2)

END DO
END DO
RETURN

C
c
C
C
C

END
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APPENDIX E

EMISSIVITY MEASUREMENTS
OF THE RESEARCH VESSEL POINT SUR

A. INTRODUCTION

In order to measure the emissivity of the paint surface of the R/V Point Sur,

a series of calibrated thermistors were installed at various locations on the skin of the

ship [Figure E.1]. The thermistors were connected to a portable COMPAQ-III com-

puter that recorded voltage values converted to temperatures at 20-second intervals.

On May 8, 1990, the ship was in port at the Moss Landing Research Station and

the AGEMA Thermovision Camera was positioned approximately 10 yards away. A

series of images were taken of the thermistor locations on the starboard side of the

ship. The AGEMA thermal temperatures along with the thermistor temperatures

are listed in Table E.1.

B. TEMPERATURE MEASUREMENT

The thermistors numbered 3.0, 1.0, and 1.1 are attached to the metal of the

ship's hull and 4.1 is attached to the paint. They are held on to the ship by a

conducting epoxy glue and covered with tape. The thermistor is very easy to pick

out on the AGEMA thermal image [Figure E.2] and the average temperature value

is read from the area closest to it which is the skin or paint of the ship.

The thermistors were calibrated at the Oceanography Department calibration

bath which is accurate to ±5 millidegrees. The calibrations are shown in Table E.2

along with linear regression formulas used to convert the thermistor values to actual

temperatures.
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C. EMISSIVITY MEASUREMENT

The recently calibrated AGEMA camera has a default value of 1.00 for the

emissivity input and all temperatures were recorded in this mode. In Table E.1,

the actual thermistor temperatures are compared to the AGEMA thermal imaging

temperatures. The temperatures measured with the AGEMA camera were lower

than the skin temperature of the ship proving the emissivity was actually lower

than 1.00. The still mode image function of the AGEMA camera, which allows the

default values in the system to be changed, was used to lower the emissivity in steps

of .01 until a temperature reading corresponded to the thermistor or actual skin

temperature of the ship. The last column in Table E.2 shows that an emissivity of

.97 is a very close approximation to the actual emissivity of the ship's surface.
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Figure E.1: May 1990 therm-istor locations on the R/V Point Sur.
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Figure E.2: AGACATS image showing location of Thermistor aboard the

R/V Point Sur.
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Table E.1

Thermistor Data From The R/V Point Sur, May 8, 1990

(Regression)
Temp. of Temp. of Corrected Temp. AGEMA Camera

Ship's Hull Thermistor of Thermistor Temp. of
Image Sensor (OC) (C) (OC) Ship's Rul

Time No. No. Location AGEMA camera Ship's Hull Ship's Hull (Emissivity: .97)

17:12.11 2 (3.0) stack (22.0) (21.414) (22.11) (22.1)
17:13.36 3 (3.0) Stac (22.1) (21.545) (22.25) (22.2)
17:22.04 9 (1.0) starboard (22.1) (21.611) (22.24) (22.2)

bow
17.25.19 10 (1.0,1.1) starboard (22.2, 23.7) (21.6767,23.151) (22.31, 23.84) (22.3, 23.8)

bow
17.26.21 11 (1.0, 1.1) starboard (22.1, 23.8) (21.589, 23.217) (22.31, 23.84) (22.2, 23.9)

bow
17:26.53 12 (1.0, 1.1) starboard (22.1, 23.7) (21.524, 23.151) (22.16, 23.84) 22.2, 23.8)

bow
17:27.47 13 (1.0) starboard (22.1) (21.65S) (22.29) (22.2)

bow
17:28.54 14 (3.0, 4.1) stack (22.1, 22.7) (21.414, 22.073) (22.11, 22.77) (22.2, 22.8)
17:31.04 i (3.0, 4.1) stack (22.3, 22.1) (21.765, 21.501) (22.46, 22.20) (22.4, 22.2)
17"34.42 18 (1.0) starboard (22.4) (21.874) (22.51) (22.5)

bow
173.38 19 (1.0, 1.1) starboard (22.1, 22.2) (21.545, 21.611) (22.18, 2231) (22.2, 22.3)

bow
17:36.11 20 (1.0,1.1) starboard (22.1, 22.2) (21.634, 21.699) (22.27, 22.40) (22.2, 22.3)

bow
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Table E.2

Thermistor Calibration Tables and Linear Regression Formulas for the
May Cruise on the R/V Point Sur.

- ACFUAL TEMPERATFURE (C) THERM ISTOR #1.0 THERMISTOR #3.0 THERMISTOR #1.1

4.0 4.718872 4.83959 4.759918
2 7.0 7.677216 7.7118605 7.7204291
31 10.0 10.650090 10.756960 10.684390
4 13.0 13.626250 13.725430 13.654450
5 16.0 16.609190 16.700900 16.634370
6 19.0 19.600280 19.688110 19.619140
7 22.0 22.592320 22.677090 22.605070
3 25.0 25.577760 25.659240 25.564060
9 28.0 . 28.630830 28.652410 28.589600

10 31.0 31.614230 31.650970 31.589050
11 34.01 34.632450 34.625400 34.592230

1121 37.01 37.644010 37.658720 37.593510
1131 40.01 40.630490 40.650420 40.5883501

- THERMISTOR #4.1

1 4.9478461
2 7.8979491 LINERR REGRESSION FORMULAS
31 10.848050
41 13.815520* THERMISTOR*# 1. .99856(x)*4.66278
S 1 16.794340; THERMISTOR # 3.0 .99513(x) + .80496

7 22.775090 THERMISTOR * 1.1 .99539() .76550
8 25.741 670 THERMISTOR # 4.1 1.0014(1) . .81892
9 28.731140

101 31.861150
11 34.992310
12 38.037930
131 40.072710
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